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Abstract. In this paper, we analytically study the string structure near the break-

up of a slender jet of a viscoelastic liquid surrounded by air. The governing 

equations are derived from the conservation laws of mass and momentum, and the 

rheological equation of the jet. The rheological equation of the jet is assumed to 

satisfy an Upper Convected Maxwell (UCM) model. Introducing a stretch variable and 

then applying a transformation, we obtain a coupled system of nonlinear differential 

equations. Via these equations, we then show that the UCM jet does not break up 

in finite time, which physically means that it has sufficient time to exhibit the 

string structure before it breaks up due to the dominant surface force. 
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1 Introduction 

The break-up of fluid jets or threads by capillary instability is ubiquitous in 

engineering, science, and nature. For example, among others, an understanding 

of this phenomenon is essential to the technologies of ink-jet printing, the 

production of stable thin coatings, the morphology and stability of extruded 

polymer blends, the transportation of oil in pipeline, and tertiary oil recovery. 

For Newtonian fluids, the asymptotics of jet break-up of Stokes flow was 

investigated by Papageorgiou [1] and presented in a more complete and elegant 

form by Eggers [2]. It was found that the asymptotic behaviour near the break-

up is governed by similarity solution.  The work of Pozrikidis [3] has shown that 

the pinching of liquid jet under the influence of surface tension can be described by 

similarity solutions of a simplified one-dimensional slender body model. The self- 

similar solution that describes  finite time break-up for Newtonian fluid jet was 

discussed in detail by Renardy [4,5].  

The work of  Eggers [2] has been extended  to  non-Newtonian fluid, such as 

power law fluids by Renardy &Renardy [6], and to various viscoelastic fluids, 

i.e. the fluids that exhibit  elastic behaviour  such as the memory effect as well as 

the fluid properties,  such as a generalized PTT model by  Renardy [7],  

generalized Newtonian fluid, K-BKZ model, and Dumbbell model by Renardy 

[8],   and a Giesikus model by Renardy & Losh [9]. They all showed that the 
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similarity solution exists, which means that such fluids will break up in finite 

time. For instance, Renardy & Losh [8]  found that the similarity solution 

exists and reduces to the solution of Eggers [2] in the limit of infinite 

retardation time.   

Beside it can break up in finite time,  a viscoelastic fluid can give complicated 

rheological phenomena.  For instance, a certain viscoelastic jet breaks up much 

more slowly than a Newtonian jet. Typically, it evolves into the so-called beads-

on-string structure, where two large drops are connected by a thin filament. The 

slow breakup process provides the viscoelastic jet sufficient time to exhibit this 

string structure.  This structure continues to thin out as fluid from the ends 

drains into drops, but it disappears only after a very long time. A resistance of 

various viscoelastic jets to break-up (or the string structure) was studied 

theoretically by Renardy [10]. Li & Fontelos [11] investigated the string 

structure and numerically showed that the elastic force is responsible for the 

drop migration and oscillation in the string structure. Oliveira & McKinley [12] 

reexamined the dynamics of polymer solutions (viscoelastic fluids) using high-

speed digital video microscopy. At long times, it was observed that the 

evolution of the viscoelastic thread deviates from self-similar exponential decay 

and the competition of elastic, capillary, and inertial forces leads to formation of 

a periodic array of beads connected by axially uniform ligaments. Clasen et al. 

[13] studied, both analytically and numerically, the beads-on-string structure of 

a liquid jet containing minute concentrations of a high-molecular-weight 

polymer. An addition of polymeric additives led to perform a stabilizing effect or 

the effect of delaying or even completely suppressing the break-up. To some 

extent, the asymptotics of the break-up for Non-Newtonian fluids, especially for 

viscoelastic fluids, is still open. 

In this paper, we shall deal with the analysis of the string structure near the 

break-up of a viscoelastic liquid jet of an Upper Convective Maxwell liquid 

(UCM liquid). The elastic property of such fluid is described by the parameter, 

so called relaxation time.  The relaxation time is a time lag between  when the 

stress is released and when the material fully snaps back. Following the same line 

as in Renardy [4,10], we introduce a stretch variable and it leads us to the nonlinear 

system of partial differential equations. We then investigate the dynamics near 

the break-up. We find that the UCM jet does not break-up in finite time. This 

finding shows that the elasticity of the jet has a stabilizing effect. The present 

results may contribute to the explanation of the string structure that were 

observed in the breaking-up process of viscoelastic fluids. 
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2  Mathematical formulation 

We consider an axisymmetric liquid jet which is perturbed from a configuration of uniform 

fluid speed and uniform radius a, surrounded by air. The jet is assumed to 

behave as a viscoelastic material and we propose it as an Upper Convected Maxwell 

(UCM) liquid, which satisfies the rheological equation:       

    𝜆  
𝜕𝑻

𝜕𝑡
+  𝒗 ⋅ ∇ 𝑻 −  ∇𝒗 𝑻 − 𝑻 ∇𝒗 ∗ + 𝑻 = 𝜂0 ∇𝒗 +  ∇𝒗 ∗ ,      (1) 

where 𝑻 is the Stress tensor, 𝒗 the velocity vector, 𝜆 the viscoelastic relaxation 

time, ∇ the gradient operator, ()* the transpose operator, and 𝜂0 the zero-shear-

rate viscosity. 

The kinematic of the motion is assumed to be one dimensional model. Here, we consider that 

the jet is thin, so called a slender jet, meaning that the axial velocity, the axial 

and the radial stress components do not vary much across the radius of the jet. 

Furthermore, we assume that the curvature in the azimuthal direction is much larger than 

the curvature in the axial direction. When the jet breaks up into spherical droplets, these 

assumptions are valid in the necks between the drops where the break-up occurs. 

To formulate the governing equations, we shall follow the formulation derived 

by Renardy [4, 10]. Let 𝑟 be the radial coordinate, 𝑧 be the axial coordinate, 𝑢 

and 𝑤 be the radial and the axial components of the jet velocity, respectively, and 

𝑓(𝑧, 𝑡) be the radius of the jet at point 𝑧 and time 𝑡. The equation of mass 

conservation leads to                                                  

 
 𝜕𝑓2

𝜕𝑡
+
𝜕 𝑤 𝑓2 

𝜕𝑧
= 0.                                                                   (2) 

The incompressibility condition,  

  
𝜕𝑢

𝜕𝑟
+

 𝑢

 𝑟
+
𝜕𝑤

𝜕𝑧
= 0,                                                                    (3) 

for which at leading order it is satisfied by 

 𝑢 = −
𝑟

2

𝜕𝑤

𝜕𝑧
.                                                                                (4) 

This yields the velocity gradient 

  ∇𝒗 =  

𝜕𝑤

𝜕𝑧
0

0 −
1

2

𝜕𝑤

𝜕𝑧

   .                                                 (5) 
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Expression (5) will be used to calculate the equations of the stress components 

of (1) (see Equations (13) and (14) below). 

Let 𝑇𝑧𝑧  and 𝑇𝑟𝑟  denote the axial and radial stress components of the stress 

tensor, respectively.  In the interface between jet and air, we assume that there is 

a jump at the normal stress due to the present of surface tension. The jump is 

also proportional to the curvature of the jet surface. Physically, this jump cannot 

be negligible since we deal with the dynamic of the interface of two different 

fluids, i.e. the interface between jet and air, and it was also believed since many 

years that the surface tension is the source of instability (see, for instance, 

Eggers [2]). So, applying the Young-Laplace relation, the interfacial condition 

on the surface of the jet at leading order requires  

 𝑇𝑟𝑟 − 𝑝 = −
𝜎

𝑓 𝑧,𝑡 
,                                                                         (6) 

where 𝑝 is the hydrostatic pressure which is assumed to be constant in a cross-

section of the jet and 𝜎 is the surface tension. In (6), we have applied a slender 

body approximation to the present jet. 

Next, we shall derive the equation of the momentum. The force in the axial 

direction has components from the stress 𝜋𝑓2 𝑇𝑧𝑧 − 𝑝  and the surface tension 

2𝜋𝑓𝜎. Neglecting the inertial forces, we obtain via Newton’s law 

 0 =
𝜕

𝜕𝑧
 [𝜋𝑓2(𝑇𝑧𝑧 − 𝑝) + 2𝜋𝑓𝜎].                                                  (7) 

Substitution of (6) in (7) and then elimination of 𝜋 yield 

 0 =
𝜕

𝜕𝑧
 𝑓2 𝑇𝑧𝑧 − 𝑇𝑟𝑟  + 𝑓𝜎 .                                                       (8) 

Equations (1) and (8) are the governing equations for the problem at hand. To 

solve these equations, it is convenient to formulate the one-dimensional 

equations in a Lagrangian formulation (the undisturbed cylindrical 

configuration). Let 𝑋 be the position of a fluid particle in this reference 

configuration.  Note that 𝑧 = 𝑧(𝑋, 𝑡) is the actual position. From now on, we 

shall regard all variables as functions of 𝑋 and 𝑡. The stretch  𝑠, which describes 

the change in actual position 𝑧 with respect to the reference position  𝑋, is 

defined by 

 𝑠 =
𝜕𝑧

𝜕𝑋
 .                                                                                         (9) 

The equality of mixed partial derivative then yields (write ds/dt= 𝑠𝑡 , for 

convenience) 
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  𝑠𝑡 = 𝑤𝑋 .                                                                                     (10) 

Furthermore, from (10) we find, so called a kinematic relation, 

 
𝑠𝑡

𝑠
= 𝑤𝑧 .         (11)                                                                                 

From Equations (2) and (11), we obtain a relation between the radius 𝑓(𝑧, 𝑡) of 

the cross-section of the jet after stretching and the stretch variable s: 

 𝑓 𝑧, 𝑡 =
𝑎

 𝑠
 .                                                                               (12) 

The axial and the radial components of the stress tensor (1) in terms of the 

stretch 𝑠 are described by the ordinary differential equations:  

            𝜆   𝑇𝑧𝑧  𝑡  − 2 𝑇𝑧𝑧
𝑠𝑡

𝑠
 + 𝑇𝑧𝑧 = 2𝜂0

𝑠𝑡

𝑠
,                                         (13)                                             

 𝜆   𝑇𝑟𝑟  𝑡  +  𝑇𝑟𝑟
𝑠𝑡

𝑠
 + 𝑇𝑟𝑟 = −𝜂0

𝑠𝑡

𝑠
.        (14) 

We note that in the Lagrangian description, the time derivative represents the 

material time derivative and the velocity gradient has the form 𝑠𝑡 𝑠 . We next 

eliminate unnecessary constants by rescaling the variables. We set 

    𝑡 =
𝑎𝜂0

𝜎
𝑡  , 𝑇𝑧𝑧 =

𝜎

𝑎
𝑇 𝑧𝑧  , 𝑇𝑟𝑟 =

𝜎

𝑎
𝑇 𝑟𝑟 .                                       (15)   

In the sequel, we shall omit the tildes since confusion is not possible. 

Application of (12) into (8), substitution of (15) in (13) and (14), and then 

integration over 𝑋 lead to 

  
𝑇𝑧𝑧−𝑇𝑟𝑟

𝑠
+

1

 𝑠
 = 𝑐 𝑡 ,       (16)                                                            

    𝑊𝑒   𝑇𝑧𝑧  𝑡 − 2 𝑇𝑧𝑧
𝑠𝑡

𝑠
 + 𝑇𝑧𝑧 = 2

𝑠𝑡

𝑠
 ,             (17) 

  𝑊𝑒   𝑇𝑟𝑟  𝑡 +  𝑇𝑟𝑟
𝑠𝑡

𝑠
 + 𝑇𝑟𝑟 = −

𝑠𝑡

𝑠
.           (18) 

Here, 𝑊𝑒 = 𝜆𝜎 (𝑎𝜂0)  is the Weissenberg number and 𝑐(𝑡) is undetermined 

integration constant, which is independent of 𝑋. The value of 𝑐(𝑡) is determined 

from the global constraint. Assuming that the perturbation of the jet is spatially 

periodic with period  𝐿, from the definition of 𝑠 in (9) we obtain 

   𝑠 𝑋, 𝑡 
𝐿

0
𝑑𝑋 = 𝐿.      (19) 

We can simplify Equations (16) –(18) if we set 

  𝑇𝑧𝑧  𝑋, 𝑡 = 𝑔 𝑋, 𝑡 𝑠2 𝑋, 𝑡 −𝑊𝑒
−1 ,                              (20) 
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  𝑇𝑟𝑟  𝑋, 𝑡 = 𝑕 𝑋, 𝑡 𝑠−1 𝑋, 𝑡 −𝑊𝑒
−1. 

The benefit of using (20) is to transform away the terms involving 𝑠𝑡 𝑠  in (17) 

and (18). Equations (16)-(18) now become, after some modifications, 

   𝑔𝑠3 − 𝑕 + 𝑠3 2 = 𝑐 𝑡 𝑠2,                                                         (21) 

  𝑊𝑒  𝑔𝑡 + 𝑔 =
𝑠−2

𝑊𝑒
,       (22) 

  𝑊𝑒  𝑕𝑡 + 𝑕 =
𝑠

𝑊𝑒
,       (23) 

Up to now, we derived the equations for the dynamics of the jet radius in terms 

of variable 𝑠. In the next section, we shall analytically show that 𝑠 in (21)-(23) 

cannot blow up in finite time. 

3 No finite time break-up for the UCM jet 

In Renardy [10], one of the viscoelastic jets that he considered was the Johnson-

Segalman fluid. For this model, he introduced three physical parameters: 𝜅, 𝜇,  
and a, where 𝜅, 𝜇,  are positive constants, and a is some number between -1 and 

+1. Note that this a differs from our a  in Section 2. He proved that for ½<a≤ 1 

the jet does not break up in finite time. This led to the conclusion that such fluid 

exhibits the string structure before it breaks up. Looking back to our model 

given by Equations (21)-(23), we can recognize that our model is a special case 

of his model if we take 𝑎 = 1 and 𝑊𝑒  = 1/𝜅 = 1/𝜇.  So, to be self-contained, 

we here apply the theorem derived by Renardy[10] and calculate explicitly all 

quantities regarding our model, such as the values of the lower and the upper 

bounds. 

Theorem. Let 𝑠(𝑡) satisfies (21)-(23) subject to the constrain (19) and subject 

to positive initial values 𝑔 𝑋, 0 = 𝑔0(𝑋) and 𝑕 𝑋, 0 = 𝑕0(𝑋) . For 𝑡 > 0, 

define  

 𝑚 𝑡 = min0≤𝑋≤𝐿 𝑠(𝑡)  and  𝑀 𝑡 = max0≤𝑋≤𝐿 𝑠(𝑡) . 

Then 𝑚 𝑡  not approach zero nor does 𝑀 𝑡  approach infinity in finite time. 

Proof.  From (22) and (23) we obtain the following inequalities: 

  𝑎1 𝑡 ≤ 𝑔 ≤ 𝑎1 𝑡 + 𝑎2 𝑡  𝑚−2𝑡

0
 𝑦 𝑑𝑦,        (24) 

  𝑏1 𝑡 ≤ 𝑕 ≤ 𝑏1 𝑡 + 𝑏2 𝑡  𝑀
𝑡

0
 𝑦 𝑑𝑦 ,       (25) 
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where 𝑎1 𝑡 = 𝑔0 𝑒
−𝑡

𝑊𝑒 , 𝑎2 𝑡 =
1

𝑊𝑒
2 =  𝑏2 𝑡 , 𝑏1 𝑡 = 𝑕0 𝑒

−𝑡
𝑊𝑒 

. Now, 

consider a point where 𝑠 = 𝑚   or  𝑠 = 𝑀 , respectively. Equation (21) can be 

rearranged as 

  𝑐 𝑡 = 𝑔𝑠 − 𝑕𝑠−2 + 𝑠
−1

2 .      (26) 

Application of (24) and (25) to (26) yields 

     𝑐 𝑡 ≥ 𝑎1 𝑡 𝑀 − 𝑏1 𝑡 𝑀
−2 − 𝑏2 𝑡 𝑀

−2  𝑀(𝑦)
𝑡

0
𝑑𝑦 +𝑀−1/2,    (27) 

     𝑐(𝑡) ≤ 𝑎1(𝑡)𝑚 + 𝑎2 𝑡 𝑚  𝑚−2(𝑦)
𝑡

0
𝑑𝑦 − 𝑏1 𝑡 𝑚

−2 +𝑚−1/2.      (28) 

Integrating (21) over [0, 𝐿], we find  

 𝑐 𝑡 ≥ −
 𝑕𝑑𝑋
𝐿

0

 𝑠2𝑑𝑋
𝐿

0

.             (29)   

Note that by Holder inequality 

   𝑠2𝐿

0
𝑑𝑋 ≥

( 𝑠𝑑𝑋
𝐿

0 )2

𝐿
= 𝐿.           (30) 

Moreover, by integrating (23) over  0, 𝐿  we obtain an upper bound for the 

integral 𝑕. Hence, (30) yields a lower bound for 𝑐(𝑡) and then (28) yields a 

lower bound for 𝑚. Now, from (24) we find an upper bound for 𝑔. Using (21) at 

any point where 𝑠 ≤ 1 we now get an upper bound for 𝑐(𝑡). Application of this 

to (27) yields an upper bound for 𝑀. 

Now, let 

  𝑁 𝑡 = max0≤𝑋≤𝐿 𝑔𝑠 − 𝑕𝑠
−2 + 𝑠−1/2.          (31) 

Assume that 𝑋 (𝑡) is a point where the maximum of (31) is attained. Then we 

must have 𝑠𝑡(𝑋 (𝑡), 𝑡) ≤ 0. Otherwise, 𝑠𝑡(𝑋 (𝑡), 𝑡) > 0 will be contradictive 

with (19). Next we evaluate the derivative of 𝑁(𝑡) with respect to 𝑡, denoted by 

𝑁𝑡 , at the point 𝑋 (𝑡): 

  𝑁𝑡 = 𝑔𝑡𝑠 − 𝑕𝑡𝑠
−2 +  𝑠𝑡  𝑔 + 2𝑕𝑠−3 −

𝑠
−

3
2

2
 .                

       = −
1

𝑊𝑒
 𝑁 − 𝑠−

1

2 + 𝑠𝑡  𝑔 + 2𝑕𝑠−3 −
𝑠
−

3
2

2
 .       (32) 
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Now, suppose 𝑁(𝑡) grows very large. Since (24) and (25) give an a priori 

bound for 𝑔, this is possible only 𝑠 becomes large. In that case, the term in 

square brackets in (32) is positive. So, in conclusion 𝑁𝑡  is negative if N is too 

large. Hence, we obtain an upper bound for 𝑁(𝑡). Now, if 𝑀(𝑡) (see its 

definition in the Theorem) were becoming infinite in finite time, then it follows 

from (31) that 𝑁(𝑡) would also blow up. This is impossible according to what 

we have just addressed. Hence, the solutions cannot blow up in finite time. 

4 Conclusions 

We here derived the model to describe the string structure formation near the 

break-up of a viscoelastic liquid jet, based on the assumption that the jet 

behaves like a slender body. Taking an Upper Convected Maxwell (UCM) 

liquid as the rheological property of the jet, the governing equations led to a 

system of nonlinear partial differential equations. Via the stretch variable, we 

showed that the UCM jet does not break up in finite time. From a physical point 

of view, this elastic fluid may take longer time and exhibit a thin filament 

before breaking-up. This thin structure continues to thin out as fluid from the 

ends drains into drops, but it disappears only after a very long time. Here, the 

elasticity of the jet plays an important role as a delaying effect. 
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