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Abstract. The notion of angles is known in a vector space equipped with an 
inner product, but not well established in a vector space equipped only with a 
norm. In this note, we shall develop some notions of angles between two vectors 
in a normed space and discuss their properties. 

Keywords: angles; inner product spaces; normed spaces; orthogonality. 

1 Introduction 
In an inner product space (X, <•,•>), the angle A(x,y) between two nonzero 
vectors x and y in X is usually given by 

 
,( , ) arccos ,

|| || . || ||
x yA x y

x y
< >

=  

where ||x|| := <x,x>1/2 denotes the induced norm in X. One may observe that the 
angle A(•,•) in X satisfies the following basic properties (see [1]): 

1.1 Parallelism: A(x,y) = 0 if and only if x and y are of the same direction; 
A(x,y) = π if and only if x and y are of opposite direction. 

1.2 Symmetry: A(x,y) = A(y,x) for every x, y in X. 
1.3 Homogeneity: A(ax,by) = A(x,y) if ab > 0; A(ax,by) = π – A(x,y) if ab < 0. 
1.4 Continuity: If xn → x dan yn → y (in norm), then A(xn,yn) → A(x,y). 
 
Now suppose (X, ||•||) is a (real) normed space. As it is known, not all normed 
spaces are inner product spaces. For instance, the space = lp(R), 1 ≤ p < ∞, 
consisting of all real sequences x := (ξk) with Σ |ξk|p < ∞, is a normed space with 

norm ||x||p := , but not an inner product space, except for p = 2. 
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In a normed space we often talk about the length of a vector or the distance 
between two vectors. Also, there are several ways that enable us to define 
orthogonality between two vectors. In this note, we shall develop some notions 
of angles between two vectors and discuss their properties. Preliminary results 
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have been presented in a national seminar at Universitas Negeri Yogyakarta on 
November 18th, 2005 [2]. 

2 P- and I-angle 
Although the notion of angles in a normed space may have been developed by 
some researchers, the literatures on this subject are very limited. As far as we 
know, the notions of angles discussed here have never been found before in the 
literatures, except for the g-angle [3]. 

Let (X, ||•||) be a (real) normed space. Before we come to the notions of angles 
between two vectors in X, let us recall the following notions of P- and I-
orthogonality (see [4] or [5]):  

2.1  P-orthogonality: x is P-orthogonal to y, denoted by x P⊥  y, if and only if  

 2 2|| || || || || || .2x y x y− = +  

2.2  I-orthogonality: x is I-orthogonal to y, denoted by x I⊥  y, if and only if  

 || || || || .x y x y+ = −  

Inspired by these two notions of orthogonality, we define the following notions 
of angles in X: 
 
2.3  P-angle between two nonzero vectors x and y, denoted by AP(x,y), is given 

by: 

 
2 2|| || || || || ||( , ) : arccos .

2 || || . || ||P

2x y x yA x y
x y

+ − −
=  

2.4  I-angle between two nonzero vectors x and y, denoted by AI(x,y), is given 
by: 

 
2 2|| || || ||( , ) : arccos .

4 || || . || ||I
x y x yA x y

x y
+ − −

=  

Note that AP(x,y) = ½ π if and only if x P⊥  y, and AI(x,y) = ½ π if and only if x 

I⊥  y. In an inner product space(X, <•,•>), P- and I-angle coincide with the 
usual angle A(x,y) because 

 ½.[ || x ||2 + || y ||2 – || x – y ||2 ] = < x,y > 
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from the Cosine Law, and 

 ¼.[|| x + y ||2 – || x – y ||2 ] = < x,y > 

from the Polarization Identity. 

The two facts below describe the properties of P- and I-angle in (X, ||•||). 

Fact 2.5  P-angle satisfies the following properties: 

(a)  If x and y are of the same direction, then AP(x,y) = 0; if x and y are of 
opposite direction, then AP(x,y) = π (part of parallelism property). 

(b)  AP(x,y) = AP(y,x) for every x and y in X (symmetry property). 
(c)  AP(ax,ay) = AP(x,y) for every x, y in X and a in R (part of homogeneity 

property). 
(d)  If xn → x dan yn → y (in norm), then AP(xn,yn) → AP(x,y) (continuity 

property). 
 
Proof.  
(a)  Recall that ||kx|| = |k|.||x|| for every x in X and k in R. Now if x and y are of 

the same direction, then y = kx, with k > 0, and hence AP(x,y) = arccos(1) = 
0. If x and y are of opposite direction, then y = kx, with k < 0, and hence 
AP(x,y) = arccos(-1) = π. 

(b)  Simmetry property is clearly satisfied since ||x – y|| = ||y – x|| for every x 
and y in X. 

(c)  This part is clear because the factor a2 is cancelled from both numerator 
and denominator when we compute the arccos. 

(d)  The continuity follows from the continuity of the norm and the arccos. 
 
Fact 2.6  I-angle satisfies the following properties: 
(a)  If x and y are of the same direction, then AI(x,y) = 0; if x and y are of 

opposite direction, then AI(x,y) = π (part of parallelism property). 
(b)  AI(x,y) = AI(y,x) for every x and y in X (symmetry property). 
(c) AI(ax,ay) = AP(x,y) and AI(ax,–ay) = π – AI(x,y) for every x, y in X and a in 

R (part of homogeneity property). 
(d)  If xn → x dan yn → y (in norm), then AI(xn,yn) → AI(x,y) (continuity 

property). 
 
Proof.  
(a)  If x and y are of the same direction, then y = kx, with k > 0, and hence 

AI(x,y) = arccos(1) = 0. If x and y are of opposite direction, then y = kx, 
with k < 0, and hence AI(x,y) = arccos(-1) = π. 
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(b)  Simmetry property is obviously satisfied since ||x + y|| = ||y + x|| and ||x – y|| 
= ||y – x|| for every x and y in X. 

(c)  The first part is clear because the factor a2 is cancelled from both 
numerator and denominator when we compute the arccos. For the second 
part, we use the fact that if AI(ax,ay) = arccos u(x,y), then AI(ax,–ay) = 
arccos(–u(x,y)), from which we get AI(ax,–ay) = π – AI(ax,ay) = π – AI(x,y). 

(d)  As for P-angle, the continuity of I-angle follows from the continuity of the 
norm and the arccos. 

 
Remark. The homogeneity property is not satisfied by P-angle and I-angle. For 
example, in the space l1, one may take x = (3,6,0,0,0,…) and  y = (8,-4,0,0,0,…), 
for which AP(x,y) = ½ π (that is, x P⊥ y) but AP(x,2y) ≠ ½ π. Similarly, if one 
takes x = (2,1,0,0,0,…) and y = (1,-2,0,0,0,…), then AI(x,y) = ½ π but AI(x,2y) ≠ 
½ π. 

3 g- and D-angle 
We shall now discuss two different notions of angles, namely g- and D-angles. 
The former is due to Milicic and is related to g-orthogonality [3], while the 
latter is related to D-orthogonality [6].  

Let (X,||•||) be a normed space. The functional g : X2 → R defined by 

 1
2( , ) : || || [ ( , ) ( , )]g x y x x y x yτ τ+ −= +  

where τ±(x,y) := 
0

|| || || ||lim
t

x ty x
t→±

+ −
, satisfies 

(i) g(x,x) = ||x||2 for every x in X; 
(ii) g(ax,by) = ab.g(x,y) for every x, y in X and a, b in R; 
(iii) g(x,x+y) = ||x||2 + g(x,y) for every x, y in X; 
(iv) |g(x,y)| ≤ ||x||.||y|| for every x, y in X. 
 
If, in addition, the functional g(x,y) is linear in y, then g is called a semi-inner 
product on X. For example, the functional 

  2 1( , ) : || || | | sgn( ) , ( ), ( )p p
p k k k k kg x y x x y lξ ξ η ξ η− −= =∑ ,p= ∈

is a semi-inner product on lp, 1 ≤ p < ∞. Using a semi-inner product g, one can 
define g-orthogonality on X as follows: 
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3.1  g-orthogonality: x is g-orthogonal to y, denoted by x g⊥ y, if and only if 
g(x,y) = 0. 

 
Note that in an inner product space (X,<•,•>), the functional g(x,y) is identical 
with the inner product <x,y>, and so g-orthogonality coincides with the usual 
orthogonality (see [7] for its verification). 
 
Related to g-orthogonality, we can define g-angle in X as follows. 
 
3.2  g-angle between two vectors x and y, denoted by Ag(x,y), is given by 

 
( , )( , ) : arccos .

|| || . || ||g
g x yA x y
x y

=  

Note that Ag(x,y) = ½ π if and only if g(x,y) = 0 or x g⊥  y. In an inner product 
space (X,<•,•>), g-angle is identical with the usual angle. 
 
Fact 3.3  g-angle satisfies the following properties: 
(a)  If x and y are of the same direction, then Ag(x,y) = 0; if x and y are of 

opposite direction, then Ag(x,y) = π (part of parallelism property). 
(b)  Ag(ax,by) = Ag(x,y) if ab > 0; Ag(x,y) = π – Ag(x,y) if ab < 0 (homogeneity 

property); 
(c)  If yn → y (in norm), then Ag(x,yn) → Ag(x,y) (part of continuity property). 
 
Proof.  
(a)  If y = kx with k > 0, then Ag(x,y) = arcos(1) = 0. If y = kx with k < 0, then 

Ag(x,y) = arccos(-1) = π. 
(b)  If ab > 0, then Ag(ax,by) = Ag(x,y) because the factor ab is cancelled from 

both numerator and denominator when we compute the arccos. If ab < 0 
and Ag(x,y) = arccos u(x,y), then Ag(ax,by) = arccos(–u(x,y)), and hence 
Ag(ax,by) = π – Ag(x,y). 

(c)  If yn → y (in norm), then we have g(x,yn – y) → 0 because g(x,yn – y) ≤ 
||x||.||yn – y|| and ||yn – y|| → 0. But g(x,yn – y) = g(x,yn) – g(x,y), and so 
g(x,yn) → g(x,y). 

 
Remark. Since g in general is not commutative, g-angle does not satisfy 
symmetry property. For example, in l1 with g(x,y) := ||x||1.∑ sgn(ξk).ηk, take x = 
(-1,2,0,0,0,…) and y = (1,1,0,0,0,…), for which g(x,y) = 0 ≠ g(y,x) Continuity 
property also fails to hold, but we leave it to the reader to find a counter-
example. 
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Now we move to the notion of D-angle. Here we suppose that X is also 
equipped with a 2-norm ||•,•|| satisfying 

(v) ||x,y|| ≥ 0 for every x, y in X; ||x,y|| = 0 if and only if x and y are linearly 
dependent; 

(vi) ||x,y|| = ||y,x|| for every x and y in X; 
(vii) ||ax,y|| = |a|.||x,y|| for every x, y in X and a in R; 
(viii) ||x1 + x2,y|| ≤ ||x1,y|| + ||x2,y|| for every x1, x2, y in X. 
 
Geometrically, ||x,y|| may be interpreted as the area of the parallelogram 
spanned by x and y in X. For example, in an inner product space (X, <•,•>), the 
mapping 

 ||x,y||S := [||x||2||y||2 – <x,y>2]1/2 

defines a 2-norm on X, called the standard 2-norm, which does represent the 
area of the parallelogram spanned by x and y. In a normed space (X, ||•||), a 2-
norm ||•,•|| may be defined by using linear functionals on X. For historical 
background of 2-norms, see [8]. 

With the 2-norm, we have the following notion of D-orthogonality on X: 

3.4  D-orthogonality: x is D-orthogonal to y, denoted by x D⊥  y, if and only if 
||x,y|| = ||x||.||y||.  

 
If, in addition, the 2-norm also satisfies ||x,y|| ≤ ||x||.||y|| for every x and y in X, 
then we can define D-angle in X as follows: 
 
3.5  D-angle between x and y, denoted by AD(x,y), is given by 

 
|| , ||( , ) : arcsin .

|| || . || ||D
x yA x y

x y
=  

Note that AD(x,y) = ½ π if and only if ||x,y|| = ||x||.||y||, that is if and only if x D⊥  
y. In an inner product space equipped with the standar 2-norm ||•,•||S, one may 
observe that 

 sin AD(x,y) = sin A(x,y), 

and hence AD(x,y) = A(x,y) when A(x,y) is acute, or AD(x,y) =  π – A(x,y) when 
A(x,y) is obstuse. 
 
Fact 3.6  D-angle satisfies the following properties: 
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(a) AD(x,y) = 0 if and only if x and y are linearly dependent (part of parallelism 
property); 

(b) AD(x,y) = AD(y,x) for every x, y in X (symmetry property); 
(c) AD(ax,by) = AD(x,y) for every x,y in X and a, b in R (part of homogeneity 

property); 
(d) If xn → x and yn → y (in norm), then AD(xn,yn) → AD(x,y) (continuity 

property). 
 
Proof. Part (a), (b), and (c) follows from the properties of norms and the 2-
norm. Part (d) follows from the continuity of norms, the 2-norm, and the arcsin. 
The continuity of the 2-norm can be established as follows. Suppose that xn → x 
and yn → y. Since 

 
|| || || , || || , || || , || || , || || , ||
|| , || || , || || || . || || || || . || ||,

n n n n n n

n n n n n n

x y x y x y x y x y x y
x y y x x y x y y x x y
− − ≤ − + −

≤ − + − ≤ − + −
 

we have ||xn,yn|| → ||x,y||, as claimed. 
 
Remark. Fact 3.6(a) and (c) suggests that D-angle can actually be used to define 
the angle between two lines spanned by x and by y. 

4 Discussion and Concluding Remarks 
In an inner product space, we are equipped with the notion of angles which 
enables us to, among other things, approximate one vector by another in a 
certain subspace or compute how close a vector to a subspace. In a normed 
space, we only have the norm to work with. Using the norm, we can measure 
the distance between two vectors but not, for example, the angle between them. 
To discuss whether two vectors are orthogonal, for instance in order to measure 
their independence, several notions of orthogonality in normed spaces have 
been developed decades ago. Unlike in inner product spaces, these notions of 
orthogonality are not derived from the notions of angles. This research is trying 
to fix the hole by constructing some definitions of angles that are related to 
existing notions of orthogonality. We also discuss their properties and compare 
with the usual angle in an inner product space. 

Related to the concept of P- and I-orthogonality, we can easily define P- and I-
angle via the Cosine Law and Polarization Identity. In an inner product space, 
P- and I-angle coincide with the usual one. In a normed space in general, P- and 
I-angle have similar properties: they both satisfy parts of parallelism property, 
symmetry property, parts of homogeneity property, and continuity property. 
Compared to the usual angle in inner product spaces, however, some parts of 
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parallelism and homogeneity properties are missing. Some examples have 
already been given. 

In 1993, Milicic [3] introduced g-orthogonality in normed spaces, via Gateaux 
derivatives. Related to g-orthogonality, one has the notion of g-angle. In terms 
of formulae, g-angle is much more similar to the usual angle than P- and I-
angle. Indeed, using the functional g(x,y), one may do a kind of Gram-Schmidt 
process. Unfortunately, g-angle only satisfies parts of parallelism property, 
homogeneity property, and parts of continuity property. Here the symmetry 
property fails to hold because the functional g(x,y) is not commutative. 

A decade earlier than g-orthogonality, another concept of orthogonality in 
normed spaces was developed by Dimminie [6] by using the notion of 2-norms. 
In this paper, we define D-angle which is related to D-orthogonality, also by 
using 2-norms. Since the 2-norm ||x,y|| represents the area of the parallelogram 
spanned by x and y, the formula for D-angle between x and y is naturally 
derived from the Sine Law, assuming that ||x,y|| ≤ ||x||.||y||. Here D-angle satisfies 
parts of parallelism property, symmetry property, parts of homogeneity 
property, and continuity property. Unlike the first three notions of angles, D-
angle is more suitabe for measuring the angle between a vector and a one 
dimensional subspace or the angle between two one-dimensional subspaces, that 
is, between two lines.  
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