

Expanding Super Edge-Magic Graphs*

E. T. Baskoro¹ & Y. M. Cholily^{1,2}

Department of Mathematics, Institut Teknologi Bandung
 Jl. Ganesa 10 Bandung 40132, Indonesia
 Emails: {ebaskoro,yus}@dns.math.itb.ac.id
 Department of Mathematics, Universitas Muhammadiyah Malang
 Jl. Tlogomas 246 Malang 65144, Indonesia
 Email: yus@umm.ac.id

Abstract. For a graph G, with the vertex set V(G) and the edge set E(G) an edge-magic total labeling is a bijection f from $V(G) \cup E(G)$ to the set of integers $\{1,2,\cdots, |V(G)|+|E(G)|\}$ with the property that f(u)+f(v)+f(uv)=k for each $uv \in E(G)$ and for a fixed integer k. An edge-magic total labeling f is called super edge-magic total labeling if $f(V(G))=\{1,2,\cdots,|V(G)|\}$ and $f(E(G))=\{|V(G)|+1, |V(G)|+2,\cdots,|V(G)|+|E(G)|\}$. In this paper we construct the expanded super edge-magic total graphs from cycles C_n , generalized Petersen graphs and generalized prisms.

Keywords: *Edge-magic*; *super edge-magic*; *magic-sum*.

1 Introduction

All graphs considered here are finite, undirected and simple. As usual, the vertex set and edge set will be denoted V(G) and E(G), respectively. The symbol |A| will be denote the *cardinality* of the set A. Other terminologies or notations not defined here can be found in [2,7,15].

Edge-magic total labelings were introduced by Kotzig and Rosa [8] as follow. An edge-magic total labeling on G is a bijection f from $V(G) \cup E(G)$ onto $\{1,2,\dots,|V(G)|+|E(G)|\}$ with the property that, given any edge uv,

$$f(u) + f(v) + f(uv) = k$$

for some constan k. It will be convenient to call f(u) + f(v) + f(uv) the edge sum of uv and k the magic sum of f. A graph is called edge-magic total if it admits any edge-magic total labeling.

^{*} This work was supported by Hibah Bersaing XII DP3M-DIKTI, DIP Number: 004/XXIII/1/--/2004.

Kotzig and Rosa [9] showed that no complete graph K_n with n > 6 is edge-magic total and neither is K_4 , and edge-magic total labelings for K_3 , K_5 and K_6 for all feasible values of k, are described in [14].

In [8] it is proved that every cycle C_n , every caterpillar (a graph derived from a path by hanging any number of pendant vertices from vertices of the path) and every complete bipartite graph $K_{m,n}$ (for any m and n) are edge-magic total.

Wallis et.al. [14] showed that all paths P_n and all *n-suns* (a cycle C_n with an additional edge terminating in a vertex of degree 1 attached to each vertex of the cycle) are edge-magic total. It was shown in [16] that the Cartesian product $C_n \times P_m$ admits an edge-magic total labeling for odd n.

It is conjectured that all trees are edge-magic total [8] and all wheels W_n are edge-magic total whenever $n \ 3 \ (\text{mod } 4)$ [4]. Enomoto et.al. [4] showed that the conjectures are true for all trees with less than 16 vertices and wheels W_n for $n \le 30$. Philips et.al. [12] solved the conjecture partially by showing that a wheel W_n , $n \equiv 0$ or 1 (mod 4), is edge-magic total. Slamin et.al [13] showed that for $n \equiv 6 \ (\text{mod } 8)$ every wheel W_n has an edge-magic total labeling.

An edge-magic total labeling f is called *super edge-magic total* if $f(V(G)) = \{1, 2, \dots, |V(G)|\}$ and $f(E(G)) = \{|V(G)| + 1, |V(G)| + 2, \dots, |V(G)| + |E(G)|\}$. Enomoto et.al. [4] proved that the complete bipartite graphs $K_{m,n}$ is super edge-magic total if and only if m = 1 or n = 1. They also proved the complete graphs K_n is super edge-magic if and only if n = 1, 2 or 3.

In this paper we will construct the super edge-magic total graphs by hanging any number of pendant vertices from vertices of the cycles, generalized prisms and generalized Petersen graphs.

2 Results

For $n \ge 3$ and $p \ge 1$ we denote by $C_n + A_p$ a graph which is obtained by adding p vertices and p edges to one vertex of cycles C_n (say v_1). The vertex set and the edge set of $C_n + A_p$ are $V(C_n + A_p) = \{v_i : 1 \le i \le n\} \cup \{u_j : 1 \le j \le p\}$ and $E(C_n + A_p) = \{v_i v_{i+1} : 1 \le i \le n - 1\} \cup \{v_n v_1\} \cup \{v_1 u_j : 1 \le j \le p\}$.

Let (n,p)-sun be a graph derived from a cycle C_n , $n\geq 3$, by hanging p pendant vertices from all vertices of the cycle. Let us denote the vertex set of (n,p)-sun by $V((n,p)-sun)=\{v_i:1\leq i\leq n\}\cup\{u_{i,j}:1\leq i\leq n,1\leq j\leq p\}$ and the edge set by $E((n,p)-sun)=\{v_iv_{i+1}:1\leq i\leq n-1\}\cup\{v_nv_1\}\cup\{v_iu_{i,j}:1\leq i\leq n,1\leq j\leq p\}$. Observe that |V((n,p)-sun)|=|E((n,p)-sun)|=n(p+1). The cycle C_n , $n\geq 3$, is super edge-magic total if and only if n is odd (see [4]). Now, we shall investigate super edge-magic total labelings for graphs of C_n+A_p and (n,p)-sun which are expanded from a cycle C_n .

Define a vertex labeling f_1 and an edge labeling f_2 of $C_n + A_p$ as follows,

$$f_1(v_i) = \begin{cases} \frac{n+i}{2} & \text{if } i \text{ is odd,} \\ \frac{i}{2} & \text{if } i \text{ is even,} \end{cases}$$

$$f_1(u_j) = n+j & \text{for } 1 \le j \le p,$$

$$f_2(v_i v_{i+1}) = 2(n+p)+1-i & \text{for } 1 \le i \le n-1,$$

$$f_2(v_n v_1) = n+2p+1,$$

$$f_2(v_1 u_j) = n+2p+1-j & \text{for } 1 \le j \le p.$$

Theorem 1. If n is odd, $n \ge 3$ and $p \ge 1$, then graph $C_n + A_p$ is super edge-magic total.

Proof. It is easy to verify that the values of f_1 are $1,2,\dots,n+p$ and the values of f_2 are $n+p+1,n+p+2,\dots,2n+2p$ and furthermore the common edge sum is $k=2p+\frac{5n+3}{2}$.

Theorem 2. If n is odd, $n \ge 3$ and $p \ge 1$, then graph (n, p) – sun is super edge-magic total.

Proof. Label the vertices and the edges of (n, p) – sun in the following way.

$$\begin{split} f_3(v_i) &= f_1(v_i) \quad \text{for} \quad 1 \le i \le n, \\ f_3(u_{1,j}) &= nj+1 \quad \text{for} \quad 1 \le j \le p, \\ f_3(u_{i,j}) &= n(j+1)+2-i \quad \text{for} \quad 2 \le i \le n \quad \text{and} \quad 1 \le j \le p, \\ f_4(v_i v_{i+1}) &= 2n(p+1)+1-i \quad \text{for} \quad 1 \le i \le n, \end{split}$$

$$f_4(v_n v_1) = 2np + n + 1,$$

$$f_4(v_i u_{i,j}) = \begin{cases} 2n(p+1) - nj & \text{if } i = 1 \text{ and } 1 \le j \le p, \\ 2np + n(1-j) + \frac{i-1}{2} & \text{if } i \text{ is odd, } 3 \le i \le n \text{ and } 1 \le j \le p, \\ 2n(p+1) - nj + \frac{i-n-1}{2} & \text{if } i \text{ is even, } 2 \le i \le n-1 \text{ and } 1 \le j \le p. \end{cases}$$

We can see that the vertices of (n, p)-sun are labeled by values $1, 2, \dots$, n(p+1) and the edges are labeled by n(p+1)+1, n(p+1)+2, \dots , 2n(p+1). Furthermore, all edges have the same magic number $k=2n(p+1)+\frac{n+3}{2}$.

A generalized Petersen graph P(n,m), $n \ge 3$ and $1 \le m \le \lfloor \frac{n-1}{2} \rfloor$, consists of an outer n-cycle v_1, v_2, \dots, v_n a set of n spokes $v_i z_i$, $1 \le i \le n$, and inner edges $z_i z_{i+m}$, $1 \le i \le n$, with indices taken modulo n.

For $n \ge 5$, m = 2 and $p \ge 1$, we denote by $P(n,2) + A_p$ for a graph which is obtained by adding p vertices and p edges to one vertex of P(n,2), say v_1 . Hence, $V(P(n,2) + A_p) = V(P(n,2)) \cup \{u_j : 1 \le j \le p\}$ and $E(P(n,2) + A_p) = E(P(n,2)) \cup \{v_1u_j : 1 \le j \le p\}$.

Let P(n,2,p) be a graph derived from P(n,2), $n \ge 5$, by hanging p pendant vertices from all vertices v_i , $1 \le i \le n$ of P(n,2). Then the vertex set of P(n,2,p) is $V(P(n,2,p)) = V(P(n,2)) \cup \{u_{i,j} : 1 \le i \le n, 1 \le j \le p\}$ and the edge set is $E(P(n,2,p)) = E(P(n,2)) \cup \{v_i u_{i,j} : 1 \le i \le n, 1 \le j \le p\}$.

In [11] it is proved that generalized Petersen graphs P(n,2) are edge-magic total. Fukuchi [6] showed that P(n,2) are super edge-magic total.

Theorem 3. If n is odd, $n \ge 5$ and $p \ge 1$, then the graph $P(n,2) + A_p$ has a super edge-magic total labeling.

Proof. Consider a bijection, $f_5: V(P(n,2) + A_p) \rightarrow \{1, 2, \dots, 2n + p\}$ where,

$$f_5(v_i) = \begin{cases} n + \frac{i}{2} & \text{if } i \text{ is even, } 2 \le i \le n - 1, \\ \frac{3n + i}{2} & \text{if } i \text{ is odd, } 1 \le i \le n, \end{cases}$$

$$f_5(z_i) = \begin{cases} \frac{n-i+4}{4} & \text{if } i \equiv 1 \pmod{4}, \\ \frac{2n-i+4}{4} & \text{if } i \equiv 2 \pmod{4}, \\ \frac{3n-i+4}{4} & \text{if } i \equiv 3 \pmod{4}, \\ \frac{4n-i+4}{4} & \text{if } i \equiv 0 \pmod{4}, \end{cases}$$

$$f_5(u_i) = 2n+j \quad \text{for } 1 \le j \le p.$$

We can observe that under the labeling f_5 , $\{f_5(v_i) + f_5(v_{i+1}) : 1 \le i \le n\} = \{\frac{5n+1}{2} + i : 1 \le i \le n\}$ and $\{f_5(z_i) + f_5(z_{i+2}) : 1 \le i \le n\} = \{\frac{n+1}{2} + i : 1 \le i \le n\}$ with indices taken modulo n. Moreover, $\{f_5(v_i) + f_5(z_i) : 1 \le i \le n\} = \{\frac{3n+1}{2} + i : 1 \le i \le n\}$ and $\{f_5(v_1) + f_5(u_j) : 1 \le j \le p\} = \{\frac{7n+1}{2} + j : 1 \le j \le p\}$. The elements of the set $\{f_5(v_i) + f_5(v_{i+1}) : 1 \le i \le n\} \cup \{f_5(z_i) + f_5(z_{i+2}) : 1 \le i \le n\} \cup \{f_5(v_i) + f_5(z_i) : 1 \le i \le n\} \cup \{f_5(v_1) + f_5(u_j) : 1 \le j \le p\}$ form an arithmetic sequence $\frac{n+1}{2} + 1$, $\frac{n+1}{2} + 2$, \cdots , $\frac{7n+1}{2}$, $\frac{7n+1}{2} + 1$, \cdots , $\frac{7n+1}{2} + p$. We are able to arrange the values 2n + p + 1, 2n + p + 2, \cdots , 5n + 2p to the edges of $P(n,2) + A_p$ in such way that the resulting labeling is total and every edge $xy \in E(P(n,2) + A_p)$, $f_5(x) + f_5(y) + f_5(xy) = \frac{11n+3}{2} + 2p$. Thus we arrive at the desired result.

Theorem 4. If n is odd, $n \ge 5$ and $p \ge 1$, then the graph P(n,2,p) has a super edge-magic total labeling.

Proof. Define a bijection, $f_6: V(P(n,2,p)) \rightarrow \{1,2,\cdots,n(p+2)\}$ as follows,

$$f_6(v_i) = f_5(v_i)$$
 and $f_6(z_i) = f_5(z_i)$ for $1 \le i \le n$,
 $f_6(u_{1,j}) = n(j+1)+1$ for $1 \le j \le p$,
 $f_6(u_{i,j}) = n(j+2)+2-i$ for $2 \le i \le n$ and $1 \le j \le p$.

We can see that under the vertex labeling f_6 the values $f_6(x)+f_6(y)$ of all edges $xy \in E(P(n,2,p))$ constitute an arithmetic sequence $\frac{n+1}{2}+1, \frac{n+1}{2}+2, \cdots, \frac{7n+1}{2}, \frac{7n+1}{2}+1, \cdots, \frac{7n+1}{2}+np$. If we complete the edge labeling with the consecutive values in the set $\{n(p+2)+1, n(p+2)+2, n(p+2)+3, \cdots, 5n+2np\}$ then we can obtain total labeling where $f_6(x)+f_6(y)+f_6(xy)=\frac{11n+3}{2}+2np$ for every edge $xy \in E(P(n,2,p))$.

In the sequel we shall consider a graph of a generalized prism which can be defined as the Cartesian product $C_n \times P_m$ of a cycle on n vertices with a path on m vertices.

Let $V(C_n \times P_m) = \{v_{i,k} : 1 \le i \le n \text{ and } 1 \le k \le m\}$ be the vertex set and $E(C_n \times P_m) = \{v_{i,k}v_{i+1,k} : 1 \le i \le n \text{ and } 1 \le k \le m\} \cup \{v_{i,k}v_{i,k+1} : 1 \le i \le n \text{ and } 1 \le k \le m-1\}$ be the edge set, where i is taken modulo n. For $n \ge 3$, $m \ge 2$ and $p \ge 1$, we will consider a graph $(C_n \times P_m) + A_p$ (respectively a graph $(C_n \times P_m) + \sum_{i=1}^n A_p^i$) which is obtained by adding p vertices and p edges to one vertex of $C_n \times P_m$, say $v_{1,m}$ (respectively to all vertices $v_{i,m}$, $1 \le i \le n$ of $C_n \times P_m$). Thus $V((C_n \times P_m) + A_p) = V(C_n \times P_m) \cup \{u_j : 1 \le j \le p\}$,

$$V((C_n \times P_m) + \sum_{i=1}^n A_p^i) = V(C_n \times P_m) \cup \{u_{i,j} : 1 \le i \le n, 1 \le j \le p\},$$

$$E((C_n \times P_m) + A_p) = E(C_n \times P_m) \cup \{v_{1,m}u_j : 1 \le j \le p\}, \text{ and}$$

$$E((C_n \times P_m) + \sum_{i=1}^n A_p^i) = E(C_n \times P_m) \cup \{v_{i,m}u_{i,j} : 1 \le i \le n, 1 \le j \le p\}.$$

Figueroa-Centeno et.al. [5] showe that the generalized prism $C_n \times P_m$ is super edge-magic if n is odd and $m \ge 2$.

The next two theorems show super edge-magic total labelings of graphs $(C_n \times P_m) + A_p$ and $(C_n \times P_m) + \sum_{i=1}^n A_p^i$.

Theorem 5. If n is odd, $n \ge 3$, $m \ge 2$ and $p \ge 1$, then the graph $(C_n \times P_m) + A_p$ has a super edge-magic total labeling.

Proof. If m is even, $m \ge 2$, $1 \le k \le m$, $1 \le i \le n$, then we construct a vertex labeling f_7 in the following way,

$$f_7(v_{i,k}) = \begin{cases} n(k-1) + \frac{i+1}{2} & \text{if } i \text{ is odd and } k \text{ is odd,} \\ nk + \frac{i-n+1}{2} & \text{if } i \text{ is even and } k \text{ is odd,} \\ nk + \frac{i-n}{2} & \text{if } i \text{ is odd and } k \text{ is even,} \\ n(k-1) + \frac{i}{2} & \text{if } i \text{ is even and } k \text{ is even,} \\ f_7(u_i) = mn + j & \text{for } 1 \le j \le p. \end{cases}$$

If m is odd, $m \ge 3$, $1 \le k \le m$, $1 \le i \le n$, then we define a vertex labeling f_8 as follows,

$$f_8(v_{i,k}) = \begin{cases} \frac{n+i}{2} + n(k-1) & \text{if } i \text{ is odd and } k \text{ is odd,} \\ \frac{i}{2} + n(k-1) & \text{if } i \text{ is even and } k \text{ is odd,} \\ nk & \text{if } i = 1 \text{ and } k \text{ is even,} \\ n(k-1) + \frac{i-1}{2} & \text{if } i \text{ is odd and } k \text{ is even,} \\ n(k-1) + \frac{n+i-1}{2} & \text{if } i \text{ is even and } k \text{ is even,} \\ f_8(u_i) = mn + j \text{ for } 1 \le j \le p. \end{cases}$$

It is easy to verify that for each edge $xy \in E((C_n \times P_m) + A_p)$ the values $f_7(x) + f_7(y)$ and $f_8(x) + f_8(y)$ form an arithmetic sequence $\frac{n+1}{2} + 1$, $\frac{n+1}{2} + 2$, \cdots , $2mn - \frac{n-1}{2}$, $2mn - \frac{n-3}{2}$, \cdots , $2mn - \frac{n-1}{p} + p$.

Let f_9 be a bijection from $E((C_n \times P_m) + A_p)$ onto $\{1, 2, \dots, 2nm - n + p\}$. We can combine the vertex labeling f_7 (or f_8) and the edge labeling $f_9 + mn + p$ such that the resulting labeling is total and the edge sum for each edge $xy \in E((C_n \times P_m) + A_p)$ is equal to $3mn + \frac{3-n}{2} + 2p$.

Theorem 6. If n is odd, $n \ge 3$, $m \ge 2$, and $p \ge 1$, then the graph $(C_n \times P_m) + \sum_{i=1}^n A_p^i$ has a super edge-magic total labeling.

Proof. Define vertex labeling f_{10} and f_{11} such that :

$$f_{10}(v_{i,k}) = f_7(v_{i,k})$$
 if m is even, $1 \le k \le m$, $1 \le i \le n$, $f_{11}(v_{i,k}) = f_8(v_{i,k})$ if m is odd, $1 \le k \le m$, $1 \le i \le n$, $f_{10}(u_{1,j}) = f_{11}(u_{1,j}) = n(m+j-1)+1$ for $1 \le j \le p$,

$$f_{10}(u_{i,j}) = f_{11}(u_{i,j}) = n(m+j)-i+2$$
 for $2 \le i \le n$ and $1 \le j \le p$.

We can see that vertices of $(C_n \times P_m) + \sum_{i=1}^n A_p^i$ are labeled by values 1, 2, 3,

 \cdots , n(m+p) and $f_t(x)+f_t(y)$ for all edges $xy \in (C_n \times P_m)+\sum_{i=1}^n A_p^i$ and $t \in \{10,11\}$ constitute an arithmetic sequence $\frac{n+1}{2}+1, \frac{n+1}{2}+2, \cdots, 2mn-\frac{n-1}{2}+np$.

We can complete the edge labeling of $(C_n \times P_m) + \sum_{i=1}^n A_p^i$ with values in the set $\{n(m+p)+1, n(m+p)+2, \cdots, n(3m+2p-1)\}$ consecutively such that the common edge sum is $k = 3mn + 2pn - \frac{n-3}{2}$. Thus the total labeling of $(C_n \times P_m) + \sum_{i=1}^n A_p^i$ is super edge-magic and the theorem is proved.

References

- 1. Bača, M., Consecutive-magic labeling of generalized Petersen graphs, Utilitas Math. **58** (2000), pp. 237-241.
- 2. Bača, M., MacDogall, J. A., Miller, M., Slamin & Wallis, W. D., *Survey of certain valuations of graphs*, Discussiones Math. Graph Theory **20** (2000), pp. 219-229.
- 3. Bača, M., Lin, Y., Miler, M. & Simanjuntak, R., *New constructions of magic and antimagic graphs labelings*, Utilitas Math. **60** (2001), pp. 229-239.
- 4. Enomoto, H., Lladó, A. S., Nakamigawa, T. & Ringel, G., Super edgemagic graphs, SUT J. Math. Vol. 34 (1998), pp. 105-109.
- 5. Figueroa-Centeno, R. M., Ichishima, R. & Muntaner-Batle, F. A., *The place of super edge-magic labelings among other classes of labelings*, Discrete Math. **231** (2001), pp. 153-168.
- 6. Fukuchi, Y., *Edge-magic labelings of generalized Petersen graphs* P(n,2), Ars Combin. **59** (2001), pp. 253-257.
- 7. Hartsfield, N. & Ringel, G., *Pearls in Graph Theory*, Academic Press, New York, 2nd Edition, 2001.
- 8. Kotzig, A. & Rosa, A., *Magic valuations of finite graphs*, Canad. Math. Bull. **13** (1970), pp. 451-461.

- 9. Kotzig, A. & Rosa, A, *Magic valuations of complete graphs*, Publ. CRM **175** (1972).
- 10. Miller, M. & Bača, M., *Antimagic valuations of generalized Petersen graphs*, Australasian J. Combin. **22** (2000), pp. 135-139.
- 11. Ngurah, A. A. G. & Baskoro, E. T., On magic and antimagic total labeling of generalized Petersen graphs, Utilitas Math. 63 (2003), pp. 97-107
- 12. Phillips, N. C. K., Rees, R. S. & Wallis, W. D., *Edge-magic total labeling of wheels*, Bull. ICA **31** (2001), pp. 21-30.
- 13. Slamin, Bača, M., Lin, Y., Miller, M. & Simanjuntak, R., *Edge-magic total labelings of wheels, fans and frienship graphs*, Bull. ICA **35** (2002), pp. 89-98.
- 14. Wallis, W.D., Baskoro, E. T., Miller, M. & Slamin, *Edge-magic total labelings*, Australasian J. Combin. **22** (2000), pp. 177-190.
- 15. Wallis, W. D., Magic Graphs, Birkhäuser, Boston-Basel-Berlin, 2001.
- 16. Wijaya, K. & Baskoro, E. T., *Edge-magic labelings of a product of two graphs*, Proc. Seminar MIPA, ITB Bandung (2000), pp. 140-144.