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Abstract. For a graph G, with the vertex set V(G) and the edge set E(G) an edge-
magic total labeling is a bijection f from V  to the set of integers 

  with the property that 
)()( GEG ∪
f, ,2 ,1{ |})(||)(| GEGV + kuvfvfu =++ )()()(  

for each uv )(GE∈ and for a fixed integer k. An edge-magic total labeling f is 
called super edge-magic total labeling if |})(|,,2,1{ GV))(( GVf =  and 

 ,1|)({| += GV (|V))(( GEf |})(||)( GEGV|,,2|)G ++ . In this paper we 
construct the expanded super edge-magic total graphs from cycles C , 
generalized Petersen graphs and generalized prisms. 

n

Keywords: Edge-magic; super edge-magic; magic-sum. 

1 Introduction 
All graphs considered here are finite, undirected and simple. As usual, the 
vertex set and edge set will be denoted  V  and  respectively. The 
symbol 

)(G ),(GE
A  will be denote the cardinality of the set A. Other terminologies or 

notations not defined here can be found in [2,7,15]. 

Edge-magic total labelings were introduced by Kotzig and Rosa [8] as follow. 
An edge-magic total labeling on  is a bijection  from V  onto G f )()( GEG ∪

|})(||)(|,,2,1{ GEGV + with the property that, given any edge uv,  

 kuvfvfuf =++ )()()(  

for some constan k. It will be convenient to call )()()( uvfvfuf ++  the edge 
sum of uv and k the magic sum of f. A graph is called edge-magic total if it 
admits any edge-magic total labeling. 
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Kotzig and Rosa [9] showed that no complete graph  with  is edge-
magic total and neither is  and edge-magic total labelings for  and 

 for all feasible values of k, are described in [14]. 

nK 6>n

3K,4K 5, K

6K

In [8] it is proved that every cycle  every caterpillar (a graph derived from 
a path by hanging any number of pendant vertices from vertices of the path) and 
every complete bipartite graph  (for any  and ) are edge-magic total. 

,nC

n,mK m n

Wallis et.al. [14] showed that all paths  and all n-suns (a cycle C  with an 
additional edge terminating in a vertex of degree 1 attached to each vertex of the 
cycle) are edge-magic total. It was shown in [16] that the Cartesian product 

 admits an edge-magic total labeling for odd n. 

nP n

mn PC ×

It is conjectured that all trees are edge-magic total [8] and all wheels W  are 
edge-magic total whenever n°3 (mod 4) [4]. Enomoto et.al. [4] showed that the 
conjectures are true for all trees with less than 16 vertices and wheels W  for 

 Philips et.al. [12] solved the conjecture partially by  showing that a 
wheel  

n

n
.30≤n

,nW 1or    0≡n
6

 (mod 4), is edge-magic total. Slamin et.al [13] showed 
that for (mod 8) every wheel W  has an edge-magic total labeling. ≡n n

An edge-magic total labeling f is called super edge-magic total if 
 and |})(|,,2 ,1{))(( GVGVf = +++= |)(| ,,2|)(| ,1|)({|))(( GVGVGVGEf

nmK ,

1

 
 Enomoto et.al. [4] proved that the complete bipartite graphs  is 

super edge-magic total if and only if 
|}.)(| GE

=m .1 or =n
2 ,1

 They also proved the 
complete graphs  is super edge-magic if and only if nK =n  or 3. 

In this paper we will construct the super edge-magic total graphs by hanging 
any number of pendant vertices from vertices of the cycles, generalized prisms 
and generalized Petersen graphs. 

2 Results 
For  and  we denote by C3≥n 1≥p pn A+  a graph which is obtained by adding 
p vertices and p edges to one vertex of cycles C  (say ). The vertex set and 
the edge set of  are V

n

1:vi

1v
}npA+nC }1:{{( pjui j ≤)AC pn ≤∪≤≤=+  and 

}.1{}1 1 jv :u j}{ 1vvn1: i{ 1vv ii)( nE p pACn ≤≤∪∪−≤= ≤+ +  
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Let  be a graph derived from a cycle C by hanging p 
pendant vertices from all vertices of the cycle. Let us denote the vertex set of 

y V

sunpn −),(

sunp −)(  b

,n

1:

,3≥n

1 ,nin, }{}1:{)),(( , pjunivsunpn jii ≤≤≤≤∪≤≤=−

1:}11:{)),(( ,1 iunivvsunpn jiiii ≤∪

 and 
the edge set by ,nE ≤{}1 v∪{ vvn−≤≤=− +

).1(,((|  |)),((| +

 
 Observe that }.pj ≤1≤  |)) =−=− pnpnEsunpnV

pn AC +

.nC

sun  The 
cycle is super edge-magic total if and only if n is odd (see [4]). Now, 
we shall investigate super edge-magic total labelings for graphs of  and 

 which are expanded from a cycle  

,3 , ≥nCn

sunp −)n,(

Define a vertex labeling  and an edge labeling  of 1f 2f pn AC +  as follows, 

 






=
+

even, is    if 
odd, is    if

)(
2

2
1 i

i
vf i

in

i  

 jnuf j +=)(1   for 1 ,pj ≤≤  
 ipnvvf ii −++=+ 1)(2)( 12   for  1 ,1−≤≤ ni  
  ,12)( 12 ++= pnvvf n

   for  1jpnuvf j −++= 12)( 12 .pj ≤≤  
 
Theorem 1. If n is odd, n  and  then graph 3≥ ,1≥p pn AC +  is super edge-
magic total. 

Proof. It is easy to verify that the values of  are 1f pn +,,2,1  and the values 
of  are 2f pnpnpn 22 , ,2 ,1 +++++  and furthermore the common edge 
sum is .2 2

35 ++ np=k   ; 

Theorem 2. If n is odd,  and then graph 3≥n ,1≥p sunpn −),(  is super edge-
magic total. 

Proof. Label the vertices and the edges of sunpn −),( in the following way. 

 )()( 13 ii vfvf =  for  1 ,ni ≤≤  
   for 11 ,pj)( ,13 += njuf j ≤≤  
   for ijnuf ji −++= 2)1()( ,3 ni ≤≤2  and 1 ,pj ≤≤  
 ipnvvf ii −++=+ 1)1(2)( 14   for  1 ,ni ≤≤  
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  ,12)( 14 ++= nnpvvf n

         








≤≤−≤≤+−+
≤≤≤≤+−+

≤≤=−+
=

−−

−

.1  and  12 even, is   if)1(2
,1  and  3  odd, is    if)1(2

,1  and  1  if)1(2
)(

2
1

2
1

,4

pjniinjpn
pjniijnnp

pjinjpn
uvf

ni

i
jii  

 
We can see that the vertices of sunpn −),

(
(  are labeled by values 1  

 and the edges are labeled by 
, ,2 ,

)1( +pn ,1)1 ++pn ,2)1( ++pn ).1( +pn2 ,  
Furthermore, all edges have the same magic number ++= )1(2 pnk .2

3+n   ; 

A generalized Petersen graph   and ),,( mnP 3≥n  2
11 −≤≤ nm

,i ,1 ni

, consists of an 

outer n-cycle  v  a set of n spokes  nvv ,,, 21 i zv ≤≤  and inner edges 
 ,1  with indices taken modulo n. ,mii zz + ni ≤≤

For  ,5≥n 2=m  and we denote by ,1≥p pAnP +)2,(

}1: pj

 for a graph which is 
obtained by adding p vertices and p edges to one vertex of  say  
Hence, 

),2,(nP .1v
=) (V+( pA)2,(nPV ))2,(nP ∪ {u j ≤≤  and  

 
=)+ pA)2,(( nPE

))2,(n(PE ∪ { 1uv }.pj ≤1:j ≤

Let  be a graph derived from  ,  by hanging p pendant 
vertices from all vertices  

),2,( pnP ),2,(nP 5≥n
,iv ni ≤≤1  o (nP

1:{ ,u ji

f  Then the vertex set of 
 is V

).2,
1 ,ni),2, p(nP })),2,(( pjPpnP ))2,(n(V ≤≤≤≤∪

:{ ,uv jii

=

}.(()), pnPEp
 and the edge 

set is 1 j ,1 ni))2,2,(( nPE ≤≤≤≤∪=  

In [11] it is proved that generalized Petersen graphs are edge-magic 
total. Fukuchi [6] showed that  are super edge-magic total. 

)2,(nP
)2,(nP

Theorem 3. If n is odd,  and  then the graph 5≥n ,1≥p pAnP +)2,(  has a 
super edge-magic total labeling. 

Proof. Consider a bijection, }2 ,,2 ,1{))2,((:5 pnAnPVf p +→+   where, 

 






≤≤
−≤≤+

= + ,1  odd, is    if
,12  even, is    if

)(
2

3
2

5 nii
niin

vf in

i

i  
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











≡
≡
≡
≡

=

+−

+−

+−

+−

4), (mod 0 if
4), (mod 3 if

 4), (mod 2 if
4), (mod 1 if

)(

4
44

4
43

4
42

4
4

5

i
i
i
i

zf

in

in

in

in

i  

 jnuf j += 2)(5   for  1 .pj ≤≤  
 
We can observe that under the labeling  ,5f :)()({ 155 ++ ii vfvf   =≤≤ }1 ni

}1 :{ 2
15 niin ≤≤++  and :{} 2

1 in n +=≤ + 11: i≤)()( 255 zfzf ii + +{  }ni ≤≤  with 

indices taken modulo n. Moreover, =≤≤+ }1:) nizi()(5 vf i{ 5f }1: nii ≤≤+{ 2
13n+  

and }.:{} 2
17 pjpj n ≤+=≤ +

}n ∪ }1:()({ 55 nifzf i

1 j≤

)2zi

1:)()({ 515 ufvf j ≤+

1:)() 15 ivfv ii ≤≤+ +

 The elements of the set 

({ 5f ≤≤+ + ∪ { f :)(5 izf)( iv5 +  
}n≤≤ ∪ ()({ 515 fvf1 i }1:) pju j ≤≤+  form an arithmetic sequence ,12

1 ++n  

,2+2
1+n ,, 2

17 +n ,12
17 ++n .p, 2

17n ++

,1+p ,,22 +

 We are able to arrange the values 
2 +n + pn pn 25 +  to the edges of pAnP +)2,(

)2,(( nPExy
 in such way that 

the resulting labeling is total and every edge ),pA+∈   +)(x5f

.2)() 2
311

5 pxyfy n +=+ +(5f  Thus we arrive at the desired result.  ; 

Theorem 4. If n is odd, n  and  then the graph  has a super 
edge-magic total labeling. 

5≥ ,1≥p ),2,( pnP

Proof.  Define a bijection, )}2( ,,2 ,1{)),2,((:6 +→ pnpnPVf  as follows, 

 )()( 56 ii vfvf =   and  )()( 56 ii zfzf =   for  1 ,ni ≤≤  
   for  11 ,pj)1()( ,16 ++= jnuf j ≤≤  
 ijnuf ji −++= 2)2()( ,6   for  ni ≤≤2  and  1 .pj ≤≤  
 
We can see that under the vertex labeling  the values 6f )()( 66 yfxf +  of all 
edges  constitute an arithmetic sequence )),2,(( pnPExy∈ ,12

1 ++n ,,22
1 ++n  

,2
17 +n ,,12

17 ++n .np2
17n ++  If we complete the edge labeling with the 

consecutive values in the set { , ,3)2( ,2)2()2(  ,1 ++++++ pnppn n +n5  
=+}2np  then we can obtain total labeling where + )(6 xyf)() 6 yf(6 xf  

np2+n
2

311 +  for every edge )).,2,(( pnPExy∈    ; 
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In the sequel we shall consider a graph of a generalized prism which can be 
defined as the Cartesian product C mn P×  of a cycle on n vertices with a path on 
m vertices. 

Let }1  and  1:{)( , mknivPCV kimn ≤≤≤≤=×

)mP× }1  and  1:{ ,1, mknivv kiki

 be the vertex set and 
( nCE ≤≤≤≤= + ∪  and  1:{ 1,, nivv kiki ≤≤+

,3≥n 2≥m

pA
}1−≤ m

, mn PC
1≤ k

1≥p
 be the edge set, where i is taken modulo n. For   and 

 we will consider a graph +× )(

+)mP ∑
=

n

i

i
pA

1

mn PC

 (respectively a graph 

)  which is obtained by adding p vertices and p edges to one 

vertex of 

×( nC

× , say  (respectively to all vertices  f 
).  Thus V

mv ,1

mP )())(( PCVAPC mnpmn

,,miv ni ≤≤

},1: pju j

1  o

nC × { ≤≤∪×=+×   

},1 ,1:{)())(( ,
1

pjniuPCVAPCV jimn

n

i

i
pmn ≤≤≤≤∪×=+× ∑

=

=+

 

× ))(( pmn APCE },1:{)( ,1 pjuvPCE jmmn ≤≤∪×  and  

  }.1 ,1:{)())(( ,,
1

pjniuvPCEAPCE jimimn

n

i

i
pmn ≤≤≤≤∪×=+× ∑

=

Figueroa-Centeno et.al. [5] showe that the generalized prism mn PC ×  is super 
edge-magic if n is odd and  .2≥m

The next two theorems show super edge-magic total labelings of graphs 

 and  pmn APC +× )( .)(
1
∑
=

+×
n

i

i
pmn APC

Theorem 5. If n is odd,  and  then the graph ,3≥n 2≥m ,1≥p pmn APC +× )(  
has a super edge-magic total labeling. 

Proof. If m is even,  ,2≥m ,1 mk ≤≤  ,1 ni ≤≤  then we construct a vertex 
labeling  in the following way,  7f
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











+−
+
+

+−

= −

+−

+

even, is   andeven  is  if)1(
even, is   and odd is  if
odd, is   andeven  is  if

odd, is   and odd is  if)1(

)(

2

2

2
1

2
1

,7

kikn
kink
kink

kikn

vf

i

ni

ni

i

ki  

 jmnuf j +=)(7   for  1 .pj ≤≤  

If m is odd, ,3≥m ,1 mk ≤≤ ,1 ni ≤≤  then we define a vertex labeling  as 
follows, 

8f

 















+−
+−

=
−+
−+

=

−+

−

+

even, is  andeven  is   if)1(
even, is  and odd is   if)1(

even, is  and 1 if
odd, is  andeven  is   if)1(

odd, is  and odd is   if)1(

)(

2
1

2
1

2

2

,8

kikn
kikn

kink
kikn

kikn

vf

in

i

i

in

ki  

 jmnuf j +=)(8  for  1 .pj ≤≤  

It is easy to verify that for each edge ))(( pmn APCExy +×∈  the values 

 and  form an arithmetic sequence )()( 77 yfxf + )()( 88 yfxf + ,12
1 ++n  ,22

1 ++n  

, , ,2
3−− n2 mn,2 2

1−− nmn .1 pp
n +− −2mn  

Let  be a bijection from 9f ))(( pmn APCE +×  onto { }.2 , ,2 ,1 pnnm +−

mnf +9

 We 

can combine the vertex labeling  (or ) and the edge labeling  
such that the resulting labeling is total and the edge sum for each edge 

 is equal to 

7f 8f p+

))(( pmn APCxy +×E∈ .2 p3    ; 2
3mn n ++ −

Theorem 6. If n is odd, and  then the graph 

 has a super edge-magic total labeling. 

,3≥n ,2≥m ,1≥p +× )( mn PC  

∑
=

n

i

i
pA

1

Proof. Define vertex labeling and  such that : 10f 11f

   if m is even, 1)()( ,7,10 kiki vfvf = ,mk ≤≤  1 ,ni ≤≤  
   if m is odd, 1)()( ,8,11 kiki vfvf = ,mk ≤≤  1 ,ni ≤≤  
 1)1()()( ,111,110 +−+== jmnufuf jj   for  1 ,pj ≤≤  
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 2)()()( ,11,10 +−+== ijmnufuf jiji  for ni ≤≤2  and 1 .pj ≤≤  

We can see that vertices of  are labeled by values 1, 2, 3, 

 and  for all edges  and  

 constitute an arithmetic sequence 

∑
=

+×
n

i

i
pmn APC

1
)(

)(y)(, pmn +

11} ,10{∈t

)( fxf tt + ∑
=

+×∈
n

i

i
pmn APCxy

1
)(

, ,2 ,1 2
1

2
1 ++ ++ nn 2 −mn  

+−
2

1n np .  

We can complete the edge labeling of  with values in the set ∑
=

+×
n

i

i
pmn APC

1
)(

)}12,2)(,1)({ ++++ pmnpmn 3(, −+ pmn  consecutively such that the 
common edge sum is .2

3−− npn23 += mnk

∑
=

+×
n

i

i
pmn APC

1
)(

 Thus the total labeling of  

 is super edge-magic and the theorem is proved.    ; 
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