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Abstract

A graph G is called hamiltonian if it contains a Hamilton cycle, i.e.
a cycle containing all vertices. Deciding whether a given graph has a
Hamilton cycle is an NP-complete problem. But, it is a polynomial
problem within some special graph classes. In this paper we consider
three classes of grid graphs, namely rectangular grid graph, eta grid
graph and omega grid graph. Our main result characterizes which of
these graphs are hamiltonian.
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1 Introduction

The infinite grid graph G∞ is defined by the set of vertices V = {(x, y) |
x ∈ Z, y ∈ Z } and the set of edges E ⊆ V ×V between all pairs of vertices
from V at Euclidean distance precisely 1. For any integers m ≥ 1 and
n ≥ 1, the rectangular grid graph R(m, n) is the (finite) subgraph of G∞

induced by V (m, n) = {(x, y) | 1 ≤ x ≤ m, 1 ≤ y ≤ n, x ∈ Z, y ∈ Z} (and
just containing all edges from G∞ between pairs of vertices from V (m, n)).
This graph R(m, n) is also known as the product graph Pm × Pn of two
disjoint paths Pm and Pn. For illustration, consider R(10, 7) in Figure
1(a). A grid graph is a graph that is isomorphic to a subgraph of R(m, n)
induced by a subset of V (m, n) for some integers m ≥ 1 and n ≥ 1. It is
clear that a grid graph G = (V, E) is a planar graph, i.e. it can be drawn
in the plane R

2 in such a way that the edges only intersect at the vertices
of the graph. In such a drawing, the regions of R

2\(V ∪ E) are called the
faces of G. Exactly one of the faces is unbounded; this is called the outer
face; the others are its inner faces. The natural drawing of a grid graph is
just described by drawing its vertices in R

2 according to their coordinates.
A solid grid graph is a grid graph all of whose inner faces have area one (are
bounded by a cycle on four vertices) in a natural drawing. A grid graph
that is not solid contains inner faces (in a natural drawing) that have area
larger than one; these faces are called holes. A Hamilton cycle in a graph
G = (V, E) is a cycle containing every vertex of V .

Itai, Papadimitriou and Szwarcfiter [?] proved that deciding whether
any given grid graph has a Hamilton cycle is an NP-complete problem.
But, recently Umans and Lenhart [?] have shown that this problem is poly-
nomial for solid grid graphs, by presenting a complicated algorithm with
time complexity O(|V |4). In this paper we consider three special classes of
grid graphs : rectangular grid graphs and two other classes of grid graphs
called eta grid graphs and omega grid graphs (which we will define in sec-
tion 2). Our main result in section 2 characterizes which of the rectangular
grid graphs, eta grid graphs and omega grid graphs are hamiltonian and
we present explicit constructions of Hamilton cycles.

2 Eta grid graphs and omega grid graphs

We now introduce the classes of grid graphs which we call eta grid graphs
and omega grid graphs.
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(a) (b) (c)

Figure 1: (a) R(10, 7) (b) η(4, 3) (c) ø(4, 3)

For s ≥ 3 and t ≥ 3 we define an eta grid graph η(s, t) a subgraph
of R(3s − 2, 3t − 2) induced by V (3s − 2, 3t − 2)\{(x, y) | x = s + 1, s +
2, · · · , 2s−2 and y = 1, 2, · · · , 2t−2}. We define an omega grid graph ø(s, t)
as a subgraph of R(3s−2, 3t−2) induced by V (3s−2, 3t−2)\{(x, y) | x =
s + 1, s + 2, · · · , 2s − 2 and y = t + 1, t + 2, · · · , 2t − 2}. For example, see
the eta grid graph η(4, 3) and the omega grid graph ø(4, 3) shown in Figure
1(b) and Figure 1(c), respectively. It is clear from these figures how these
graphs should be extended for other values of m and n. Notice that in the
graphs from these two classes, there is no hole in the eta grid graphs , i.e.
they are solid grid graphs, and there is exactly one hole in the omega grid
graphs.

The aim of this paper is to prove the following result. We postpone the
proofs and constructions (figures) until the section 3.

Theorem 1 Let m ≥ 2, n ≥ 2, s ≥ 3 and t ≥ 3. Let R(m, n), η(s, t) and
ø(s, t) denote the rectangular grid graph, the eta grid graph and the omega
grid graph as defined above, respectively. Then:
(i) R(m, n) is hamiltonian if and only if m · n is even ;
(ii) η(s, t) is hamiltonian if and only if s · t is even ;
(iii) ø(s, t) is hamiltonian.

3 Proofs and constructions

A useful necessary condition for hamiltonicity is the following result due to
Grinberg [?].

Lemma 2 Suppose a planar graph G has a Hamilton cycle H. Let G be
drawn in the plane, and let ri denote the number of faces inside H bounded
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by i edges in this planar embedding. Let r
′
i be the number of faces outside

H bounded by i edges. Then the numbers ri and r
′
i satisfy the following

equation. ∑

i

(i − 2)(ri − r
′
i) = 0.

We use this lemma to show that R(m, n) contains no Hamilton cycle if
m · n is odd, and that η(s, t) contains no Hamilton cycle if s · t is odd.

Corollary 3 R(m, n) contains no Hamilton cycle if m · n is odd.

Proof. There is exactly one face with 2(m + n − 2) edges and there are
exactly (m−1)(n−1) faces with four edges in the planar (natural) drawing
of the rectangular grid graph R(m, n). Let this graph be hamiltonian. Then
by Lemma 2 we have

(2(m + n − 2) − 2)(−1) + (4 − 2)(r4 − r
′
4) = 0.

Hence
r4 − r

′
4 = m + n − 3. (1)

It is known that the number of faces with four edges is

r4 + r
′
4 = (m − 1)(n − 1). (2)

From equation (1) and (2) we obtain

2r4 = m · n − 2. (3)

So, m · n is even.

Corollary 4 η(s, t) contains no Hamilton cycle if s · t is odd.

Proof. There is exactly one face with 6(s − 1) + 10(t − 1) edges and there
are exactly 7(s − 1)(t − 1) faces with four edges in the planar (natural)
drawing of the eta grid graph η(s, t). Let this graph be hamiltonian. Then
by Lemma 2 and using a similar method as in the proof of Corollary 3, we
obtain

2r4 = 7s · t − 4s − 2t − 2. (4)

So, s · t is even.
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Figure 2: A Hamilton cycle for R(16, 13)

(a) (b)

Figure 3: A Hamilton cycle for : (a) η(6, 5) (b) η(5, 6)

We complete the proof of Theorem 1 by showing, through construction,
the existence of a Hamilton cycle in all cases where m = 16, n = 13, s = 5,
6, or 7, and t = 5 or 6. Meanwhile, for other values of m, n, s and t, it
is not difficult to see from the patterns in the figures that follow how to
extend the solutions.

A Hamilton cycle for R(16, 13) is shown in Figure 2. The pattern in
this figure can be used for finding a Hamilton cycle for the rectangular grid
graph for any even number m or n.

Hamilton cycles for η(6, 5) and η(5, 6) are shown in Figure 3(a) and
3(b), respectively. The pattern in Figure 3(a) can be used for finding a
Hamilton cycle for the eta grid graph for any even number m and any
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(a) (b)

Figure 4: A Hamilton cycle for : (a) ø(6, 5) (b) ø(7, 5)

number n. Meanwhile, the pattern in Figure 3(b) can be used for finding
a Hamilton cycle for the eta grid graph for any number m and any even
number n.

Finally in Figure 4 we show Hamilton cycles for ø(6, 5) and ø(7, 5). The
pattern in Figure 4(a) can be used for finding a Hamilton cycle for the
omega grid graph for any even number m or n. Meanwhile, the pattern in
Figure 4(b) can be used for finding a Hamilton cycle for the omega grid
graph for any odd numbers m and n.
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