PROC. ITB, VOL. 35, NO. 2&3, 2002 381

COMPOUND SUMS AND THEIR APPLICATIONS
IN FINANCE

R. Helmers'* & B. Tarigan"**

' Centrum voor Wiskunde en Informatica (CWI), Amsterdam, The Netherlands
: Departm?nt of Mathematics, Institut Teknologi Bandung, Indonesia
r.helmers@cwi.nl , * bernadetta.tarigan@cwi.nl

Abstract

Compound sums arise frequently in insurance (total claim size in a portfolio)
and in accountancy (total error amount in audit populations). As the normal
approximation for compound sums usually performs very badly, one may look
for better methods for approximating the distribution of a compound sum, e.g.
the bootstrap or empirical Edgeworth / saddlepoint approximations. We sketch
some recent developments and indicate their relevance in finance. Second, we
propose and investigate a simple estimator of the probability of ruin in the
Poisson risk model, for the special case where the claim sizes are assumed to be
exponentially distributed. )

1 Introduction

[n this survey paper we will sketch some recent developments on compound sums and
their statistical applications in finance. First we briefly discuss statistical estimation
of the total claim size / total error amount in insurance/accountancy applications.
Second, we propose and investigate a simple estimator of the probability of ruin in
the Poisson risk model. for the special case where the claim sizes are assumed to be
exponentially distributed.

Let S, =37, Z;,n=1,2,..., denote the partial sums of nonnegative independent
and identically distributed (i.i.d.) random variables (r.v.'s) Z1, Zs,. .., with common
distribution function (d.f.) H. In insurance applications S, can be interpreted as
the arrival time of claims. That is, S; = Z) is the arrival time of the first claim.
Sy = Z) + Z, the arrival time of the second claim, etc. Define the renewal counting
process { N(t),t > 0} by

N(t) =max{n: S, <t} (1.1)

ie. N(t) is the number of claim arrivals in [0,¢]. If H(z) = 1 — exp(-gz), = > 0,
that is the claim inter-arrival times Zj,Z,... are exponentially distributed with
parameter 3, then {N(¢),t > 0} is a Poisson process with intensity (rate) 3, 3 > 0.
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This means that the process {N(t),t > 0} has independent increments: the number
of claims that occur in disjoint time intervals are independent, while the number of
claims in any interval of length t is Poisson distributed with mean ft: for all s,¢t > 0
t n
P(N(t+s)—N(s)=n)=e‘mQ— , n=0,1,... (1.2)
n!
Note that (1.2) implies that the Poisson process {N(t),t > 0} has stationary incre-
ments and its mean value is equal to EN(t) = St.

A compound Poisson process {Sy(y),t > 0} with rate 3 is given by

N(t)
Sny =3 Xi, t=0 (1.3)
=1

where {N(t),t > 0} is a Poisson process with rate 8, and {X,,i > 1} is a family of
i.i.d. r.v.’s with common d.f. F, also independent of {N(t),t > 0}. For any fixed ¢,
the random variable Syy) is called a compound Poisson sum or a random Poisson
sum.

It is well known that

Sy —vu
NI,

where Sy = Sy, v = EN(t) = ft, the expected number of claims in [0,¢], and
p = [z dF(z), whercas pp = [x% dF(z) is assumed to be finite. Here N(0,1)
denotes a standard normal r.v. Note that in insurance applications ESy) = vu
denotes the total claim size in a portfolio in [0, ¢]. We refer to Gnedenko & Korolev
(4] for an excellent account of the general theory for compound sums.

2, N(0,1) , asv — o0 (1.4)

As a first statistical application we want to establish a confidence interval for
ESNn = vpu, the total claim size. Let us assume that claim sizes X1,..., Xy are ob-
served. An approximate normal based confidence interval for ESy, with confidence
level 1 — a, is given by

N N
(S = tap (XD, Sy +1uapp (3 XD?) (15)

i=1 =1

where uqa/2 = ®7}(1 — @/2). Here ® denotes the standard normal d.f. This is a
simple consequence of (1.4), a central limit theorem for Poisson compound sums.
However, the normal approximation for compound sums usually performs very badly,
because typically the distribution of the X;, that is the claim size distribution F in
insurance applications, is highly skewed to the right. One may look for better
methods for approximating the distribution of a compound sum, e.g. the bootstrap
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or empirical Edgeworth/saddlepoint approximations. To obtain a more accurate
confidence interval for the total claim size ESy than the normal-based interval (1.5)
one has to consider a Studentized Poisson compound sum

Sy —vi
(S, X2 o
instead of (Sy ~ vu)//Thz (see (1.4)), and establish an Edgeworth expansion for
the d.f. of (1.6):

Sy — v
Pt <) =0

as v — oo. Here u3 = EX}, and ¢ denotes the standard normal density. In
addition to the standard normal limiting distribution ¢ for a Studentized com-
pound sum, we correct for skewness by means of a term of order 1/,/v in the Edge-
worth expansion. With the aid of the expansion (1.7) one can obtain an improved
Edgeworth-based confidence interval for £Sy. For statistical applications one has
to replace the skewness coefficient U~1/2#3/ug/2 in (1.7) by its empirical counter-
part SN X3/(N | X2)3/2. Another possibility would be to employ the bootstrap
and/or use empirical saddlepoint approximations. This is work in progress (see [7]
and [10]).

1 ;
+ 6—\7;;;—5/%(%2 F 1)) +oll/VE),  (LT)

Our second application arises in statistical auditing (see [6]), where one attempts
to check the validity of financial statements of a firm or a government agency. Com-
pound sums like Sy naturally show up in this context as well. In these accountancy
applications Sy denotes the "total error amount” in a random sample of size n
drawn without replacement from an audit population of "book amounts”; the X;,
1 < i < N, are the nonzero errors observed by the accountant in n recorded ”"book
values”; N is the random number of book values in the sample of size n with error.
In typical applications errors are rare, that is the probability that the errors are
non zero is close to zero, and the Poisson approximation for N works well. Clearly
%SN is an unbiased estimator of the total error amount in an audit population
of size T. In [6] a new upper confidence limit for the total error amount in an
audit population - or for %ESN = %Vu - is obtained. The method involves an
empirical Cornish-Fisher expansion in the first stage; in the second stage we employ
the bootstrap to calibrate the coverage probability of the resulting interval estimate.

Next we will briefly describe the Poisson risk model, which is a simple model for
the risk in an insurance portfolio based on the compound Poisson process {Sy ().t >
0} and discuss (see section 2) the statistical estimation of ruin probabilities in this
model. The risk can be described as

risk = initial capital 4+ income - outflow ,
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and the risk reserve process up to time t can be modelled as
R(u,t)=u+ct-SN(t) , t20 (1.8)

where u > 0 is the initial capital and ¢ > 0 is the premium rate; note that for any
fixed ¢, Sniy = Zfi(lt) Xi is a Poisson compound sum. By ruin we mean the event
{Sn(t) > u + ct}: the income u + ct at time ¢ of the insurance company is smaller
than the total claim S N(t) to be paid to the customers.

Note that we assume that premium income is linear in time with rate ¢ > 0 and
we do not take into account neither the interest income for the accumulated re-
serve nor the expenses, taxes and dividends etc. Sney = Zili(f) X; is the total
claim size (or aggregate claim amount) up to time ¢. If N(t) = 0, define Sniy = 0.
This model is also known as the classical Cramer-Lundberg model for insurance risk.

Figure 1 shows a realization of a risk reserve process (1.8): we see that both the
third claim which occurs at time 7 = Z; + Z, + Z3 and the fourth claim at time
' = 1 + Z4 yield a value of the risk reserve process below zero. Hence, T denotes
the first time that ruin occurs; 7 is a defective r.v. and P(t < 00) denotes the
probability that ruin will happen at least once; the event {T = oo} corresponds to
the case that R(u,t) is nonnegative for any ¢ > 0: no zero crossing of the risk reserve
process will occur in (0, c0).

R{u,t)

Figure 1 One realization of the risk reserve process R(u,t)

It is clear that, for any fixed u, the process R(u, t) increases linearly with slope ¢
until a claim occurs, at which point the process has a downward jump, since the
value of Sy, increases at these points.

G:
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Definition For anyu > 0 and 0 < T < 00, the probability of ruin in "finite time
horizon” [0, T] is given by

Y(u,T) = P(R(u,t) < 0 for somet <T).

The probability of ruin in "infinite time horizon” is defined as Y(u,00) = limyp_q ¥(u, T);
or in other words:

W(u) = ¥(u,00) = P(R(u,t) <0 for some t>0), u>0, (1.9)

that is, ¥(u) = P(r < o0). In section 2 we will focus on the statistical estimation of
the probability of ruin W(u) for the special case that the claim sizes X;, 1 <i < N,
are i.i.d. with exponential distribution with mean A, A > 0. That is, F is exp(1/)).
In this very special case the probability of ruin W(u) has a simple form: for any
u 20,
oo (-ul} -2) sifA<ce/p
Y(u) = (1.10)
1 ; otherwise .

For practical applications in insurance, statistical estimation of W(u,T), for
T = 10 years, say, is perhaps more interesting; in the present paper we focus on
a simpler problem of estimating W(u). Note that W(u) > ¥(u,T), for any T > 0;
typically the error we make in replacing ¥(u,T) by ¥(u) is quite small. In this
connection we want to mention that as early as in 1955 H. Cramér showed that if
u — 00, T — 00 and u?/T — 0, then ¥(u) — W(u,T) gets exponentially small (see
Jensen (1995) (12] page 300, for details).

The condition A < ¢/f is known as the net profit condition, and also as the
positive safety loading p condition where 1+ p = ¢/8A. To verify (1.10) we recall the
well-known general formula for the probability of ruin under the net profit condition
A<c¢/fand u>0:

U(u) = 1—~)Z ’\ﬁ (1-GC"(w), (1.11)

where G(z) = 5 fo (1 - F(y))dy and G denotes the rfold convolution of G with
itself; \Il(u) =1if A > ¢/8. We refer to Asmussen [1] page 63, or Rolski et al. [14]
page 164, as well as Embrechts et al. [3] page 29. In the important special case that
F(z) = P(X <z)=1-¢"%* G reduces to

bore ~y/A 1o ~u/A

Guy=~ [ 01-(—-e¥)dy = —e ¥My=1-¢ .

X Jo b A
This means that not only F but also G is exp(1/A), and consequently G is
Gamma(r, 1/A). By a standard argument, the formula for ¥(u) in (1.11) can now
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be simplified as follows:

ule—/A /\r—l
Y(u) = 1—-)z’\ﬁ ( /OZ__Z_T_(_%!_)_dy>

=N

¢ (r—1)!
r=1
AB, [ AB. 5 eV (y/A)
= (1—7)/u (;(0)————“_1) )dy
= (1*%'[2) /uoo (ge_y/,\;(%i)r—lﬁ) dy
~ -2 [T ey

= AM1/A—p/c) Z (1/Xx = B/c)~! e~w1/A=Be)
% exp(—u(l/A = B/c)) ,

which is precisely (1.10).

2 Statistical estimation of the probability of ruin

We consider the Poisson risk model for the special case that the claim size d.f. F
is exp(1/A), with [z dF(z) = ), so that the infinite time probability of ruin has
the simple form given in (1.10). Let x denotes the expected inter-claim arrival time
EZ;. Clearly « = 1/8.

Let us suppose that a single realization (past data) of the compound Poisson
process with rate 1/x, Sy = Zi}i(f) X, is observed in a bounded window (interval)
W, which expands in time. That is, we observe the inter-arrival times {Z;} and the
claim sizes {X;} occurring in W. Let v = EN(W) = g|W| = |W|/x denotes the
expected number of claim arrivals in W; [W| denotes the size or Lebesque measure
of W and v can be viewed as the expected sample size of our data set. From a single
realization Sy, ¢t € W, one can compute

v L X
Z N=ﬁZZi , (2.1)
=1 i=1

where N is the number of observed claims, provided at least one claim is observed
in W. If N = N(W) =0, no claims have occurred in W - our data set is empty -
and statistical estimation (of ¥(u)) is clearly impossible. Note that N =N | N > 1,

2 |
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i.e. N is a zero truncated Poisson r.v. Clearly EN~! = oo, while it can be checked
that EN~! ~ v~ or more accurately (see (8])

ENT'=yvlou2 i 208 p v 1 o(v™), asv —00. (2.2)

Asymptotic expansions like (2.2) enable us to obtain asymptotic approximations
for the central moments of the empirical mean of claim sizes Ag and inter-claim
arrival times K5 (c.f. (2.1)). In practice the exact times of the claim arrivals may
not be known to the insurance company, that is, the Z;’s were not observed, only
the total number of claims N(W) in W is observed. In this situation K5 cannot
be computed; instead onc may estimate & by [W|/N(W). Note that (2.2) directly
yields that E((W|/N(W)) = xv(v™! + O(r~2)) =k + O(v™!), as v — .

We estimate the probability of ruin ¥(u) with its plug-in estimate, which is
obtained by simply replacing the unknown parameters A and & by their empirical
counterparts Ay and Ky:

dg N ~
c—f; cxp(»u(;‘; - E‘FIETV')) ; Ay <cRy

Wy (u) = (2.3)

1 ; otherwise .

Throughout this paper we will assume that both the initial capital u and the pre-
mium rate ¢ are known to the insurance company. One can check that the estlmates
A &~ and Ky have the (weak) (,OIlblbteIl(,y property: as v — oo, then h) N 2, X and
Ky -2, k. Asymptotic normality of ¥ ~{u) can also be established, whenever A < cx.

Theorem For any fized u, as v — 00,
Vo (B - e@) -5 N,

where 7% = 72(u) = [¥(u)]? [(1 + u/A)? + (1 + u/(ck))?], provided that A < ck.
Moreover, zf/\ > cK, then as v — o0,

-~

¥ 5 (u) 2%,

In fact, if A > ¢k, the much stronger assertion P(@N(u) =1)=1- P(XN <
cRy) = 1- O(e“d"), as v — oo, for some constant d > 0, also holds true (c.f

Lemina). In the border case A = ¢k a non-normal weak limit for ﬁ(\le(u) ~-1)
appears. We refer to (9] for details.

Sketch of proof. We first consider the case that A < cx. Write

Ay = Villp) - B0y <o)
By = Villg() - ¥@)I(x 2 cRy),
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then \/E(\/I;N(u) —- W(u)) = Ay + Bgy. For any fixed u > 0 one can prove that
Ay 4, N(0,7%) and By 2,0, as v — co. Then Shutsky’s theorem yields the desired
result. The main term Ay can be analyzed by a Taylor expansion (¥{u) is differ-
entiable in A and k) and the remainder term By can be shown to be negligible by
means of the lemma below. We refer to [9] for a complete proof.

Finally we counsider the case that A > ¢x. The claim is that, if A > ¢k, then
\TIN(u) %% 1, as v — oo. To check this we note that @N(it) 251 ifXN/r:EN 25N/ ek,
because of (2.3). The latter requirement, however, is a simple consequence of the
(strong) consistency property of Ay and Kg: as v — oo, then XN 2% X and
Ry 25 k. O

In fact, see also [9], one can show that the theorem remains valid if not only
v — o0, but also u — oo, provided u/y/v — 0. This is of much importance in
insurance applications, as typically the initial capital u is large and the probability
of ruin will be quite small. If both u and v approach infinity, while u/\/v — 0, we

obtain
NAETIO) d 1 1 .
o <——_\11(u) — l) — N <0’5‘3 + (m)2> , (2.1)

provided A < ¢k. 1f u is fixed, then (2.4) yields the classical order v=!/% for the
random deviations @N('lt)/W('(t) = 1. On the other hand, if u — oo, but u = o(\/v),
then the order of magnitude of the relative crror ¥ 5 (u)/¥(u) ~ 1 is of a larger or-
der, namely u/\/v. In view of (2.4), the quantity v/u? can be seen as the order of
magnitude (up to a constant factor determined by the scale (currency) of u) of the
"effective sample size” for estimating ¥(u), as both v and u get large.

In Figure 2 we see that indeed very large data sets (that is, a very large value
of v) seem to be needed before "asymptotic normality” really starts to work. In
the left panel, normality clearly fails to hold: the Q-Q plot shows that the distri-
bution of \i/N(u) is highly skewed to the right. In this case v = 10%, u = 108, so
that u//v = 10. In the other two panels the cases v = 10° u = 10%, respectively
v =108, u = 103, are displa)yed, corresponding to u/v/v = 1 and 1/10 respectively.
Clearly the distribution of ¥ y(u) is much closer to the normal in these two cases.
We refer to Hipp [11] for some related work.

To conclude this section we present a simple and useful lemma which shows that
in a certain sense our estimator (2.3) for ¥(u) behaves as one would hope. The
lemma also serves as an important technical tool in our asymptotic analysis; for
instance, it is used in the proof of the theorem. However, the lemma is more general
in scope, as it will also be useful when investigating estimators for the probability
of ruin in the Poisson risk model with general claim size d.f. F', that is, estimators
of W(u) given by (1.11).
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4

Figure 2: Normal Q-Q plots of @N(u) based on 5000 realizations of (2.3) simulated
in W = [0, k], where v = 10* (left), v = 10° (middle), and v = 108 (right); with
k=10, A =95, ¢ =1, u=1000. The true probability of ruin U(u) = 0.00492.

The estimator (2.3) of the probability of ruin W(u) will take the value 1 if and
only if XN > cky. The following lemma tells us that, if A < cx, this unpleasant
event will happen with exponentially small probability as v gets large, provided
Bernstein’s condition is satisfied. This is confirmed by the simulations for various
large values of v reported in Figure 2: none of the 15.000 values of $(u), were found
to be equal to 1.

Lemma Suppose that the common distribution F of the i.i.d. claim sizes X;, i =
1,2,... satisfies Bernstein's condition: form =2,3,... and some positive constants
K and R we have

Er| X1 - EX; "< m!K™ 2R%/2 . (2.5)
If A < cx, then there erists a positive constant d) (depending on X and k) such that

POy >c Ky)=0 <e_d‘”) LAS U — 00 . (2.6)

Similarly, if A\ > cx, then P(X,\-, ScRy)=0(e "), asv — .

Sketch of proof. The basic probabilistic tool to prove this lemma is a well-known
property of the Poisson process: conditionally given that N = n, the arrival time
Yie1 Z; of the nth claim has exactly the same distribution as the distribution of
the maximum of a random sample of size n from the uniform d.f. on W = (0, ),

where T = xv. That is, £( Z:L Zi|N=n)=L(T Un:n), with Up., denotes the




390 R. Helmers & B. Tarigan

maximum of a sample of size n from the Uniform(0, 1) distribution.
In view of the preceding argument we can write

POz 2 cRy) = ip(ix,— > cTUnm) P(N =n). (2.7)
n=1 i=1

We split the summation in (2.7) in two parts: N = T U J° with [ = {n € N ¢
n— EN |< eVEN} for some fixed € > 0. Then,

P(Ay > ¢ Ry) < ZP(in > cTUn;n) +> P(N=n). (2.8)

nel i=1 nele

The second term in (2.8) can be bounded as follows:

Z P(N=n)= p(l_]v___Eﬂ > c) < (2.9)

2 —€2
The latter inequality is nothing but an exponential bound for zero-truncated Poisson
r.v.’s, which can be easily established by slightly modifying the proof of a well-known
exponential bound for Poisson r.v.’s (see Reiss [13] page 222).
Taking ¢ = ¢(v,a) = a/v for some constant a > 0, it is easy to check from (2.9)
that

Z P(N =n)= O(e_d") , a5 v — 00. (2.10)

nel¢

with d = a?/(2 +a) > 0. It remains to evaluate the first term on the right hand side
of (2.8). To check that this term is also of exponentially small order one can appeal
to Bernstein's inequality (c.f. (2.5)). We refer to [9] for complete details. O

Note that Bernstein’s condition (2.5) is easily checked to be valid for the case
that F is exp(1/A), A > 0. Bernstein’s condition also holds true for many other
d.f.’s F, but typically fails for heavy-tailed claim size d.f.’s. An interesting example
of a claim size d.f. F for which Bernstein’s condition (2.5) fails is the Pareto d.f.,
F(z) =1- (14 z)72, for > 0. For this simple heavy-tailed model we have that
Jx dF(z) is finite, but [ z? dF(x) = co. A simple calculation based on Theorem
2.1.a of Gut [5] shows that, if A < ck, then in the Pareto model we have that
P(:\N > cKy) — 0, as v — 00, at a fairly slow rate, namely slightly slower than
v~1. Hence, any estimator of the probability of ruin (1.11), which would involve XN
and K5 will presumably work less well in such heavy-tailed models, then it does in
cases where Bernstein’s condition is satisfied. The case that A and s are known, but
F (and hence G) is unknown and must be estimated from the data, was considered
py Croux & Veraverbeke |[2].
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