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Abstract

After a brief introduction to the field of Conic Optimization we present
some interesting applications to the (robust) truss topology design (TTD)
problem, where the goal is to design a truss of a given weight best able
to withstand a set of given loads. We present a linear model for the
single-load case and semidefinite models for the multi-load and the ro-
bust TTD problem. All models are illustrated by examples. It is also
shown that by using duality the size of some of these models can be
reduced significantly.
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1 Introduction

To make optimal decisions is one of the most basic desires of a human be-
ing. Whenever the situation and the targets admit a tractable mathematical
formalization, this desire can. to some extent, be met by tools offered by the
optimization theory and algorithms. A very general mathematical setting of
an optimization problem is the following:

:I:Iéi}l{fo(:r) s filz) £0,i=1,...,m}. (P)

In this problem, we are given an objective function fo(z) and finitely many
functional counstraints fi(z) < 0,¢ = 1,...,m. The functions fi(z) are real-
valued functions of an n-dimensional design vector = varying in a given domain
X. The goal is to minimize the objective over the feasible set of the problem,
i.e., the set which is cut off the domain X by the system of inequalities f;(z) <
0,i=1,...,m. In general, this is a very hard problem to solve. The situation
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is much better if all functions f;(z),i = 0,1,...,m are convex. In that case
(P) is called a Convex Optimization problem. But even then, the problem
might be hard to solve.

In this paper we restrict ourselves to a special class of convex optimization
problem, namely Conic Optimization (CO) problems. Conic optimization ad-
dresses the problem of minimizing a linear objective function over the inter-
section of an affine set and a convex cone. The general form is as follows

;neig{ch : Ax—bEIC}. (CP)

The objective function is ¢T'z, with objective vector ¢ € R™ Furthermore,

Az — b represents an affine function from R™ to R™ and K denotes a con-
vex cone in R™. Usually A is given as an m x n (constraint) matrix, and
b € R™. The importance of this class of problems is due to two facts: first
many nonlinear problems can be modelled as a conic optimization problem,
and, secondly, under some weak conditions on the underlying cone K, conic
optimization problems can be solved efficiently.

The most easy and most well known case occurs when the cone K is the
nonnegative orthant of R™, i.c. when K = R

icnelllll {cT;c s Ar—be R’f}. (LO)
This is nothing clse as one of the standard forms of the well known Linear Op-
timization (LO) problem. Thus it becomes clear that LO is a special case of
CO. It is well known that LO models cover numerous applications. Whenever
applicable, LO allows to obtain useful quantitative and qualitative informa-
tion on the problem at hand. The specific analytic structure of an LO problem
gives rise to a number of general results which provide in many cases valuable
insight and understanding. At the same time, this analytic structure under-
lies some specific computational techniques for LO; these techniques, which
by now are perfectly well developed, allow to solve routinely quite large (with
tens/hundreds of thousands of variables and constraints) LO problems. Nev-
crtheless, there are many situations in reality which cannot be covered by LO
models. To handle these "essentially nonlinear” cases, there is a strong need
to extend the basic theoretical results and computational techniques known
for LO beyond the bounds of LO.

When passing from a generic LO problem to its nonlinear extensions, we should
expect to encounter some nonlinear components in the problem. Historically,
this was done by putting the nonlinearity in the functions defining the prob-
lem, as done above in problem (P). In conic optimization, however, we replace
the cone R%} in (LO) by a nonlinear convex cone K, and hence the nonlin-
earity is now captured in the cone. In the next section we discuss some basic
properties of relevant convex cones and we introduce two special cones that
play prominent role in the context of conic optimization.

re:
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In the recent years, a lot of attention has been devoted to conic optimization.
The rcason is that the interior-point methods that were developed in the two
last decades for LO (see, e.g., [19, 22, 24, 23]), and which revolutionized the
field of LO, could be naturally extended to obtain polynomial-time methods
for CO (see, e.g. [18]). This opened the way to a wide spectrum of new appli-
cations which cannot be captured by LO, e.g. in control theory, combinatorial
optimization, etc. For a complete survey both of the theory of CO and its
applications, we refer to the recent book [8].

The aim of the paper is to introduce the reader to the theory of CO, and to
llustrate its use. LO has a beautiful duality theory. We will see that much
of this theory can be gencralized to CO. We deal with one of the important
applications of conic optimization, namely truss topology design (TTD). A
truss is a mechanical construction comprising thin elastic bars linked to cach
other, such as an clectric mast, a railroad bridge, or the Eiffel tower. The
TTD problem deals with how to design an optimal truss, with a given weight,
best able to withstand a given load. The TTD problem has been studied
extensively, both mathematically and algorithmically [1, 2, 5, 13, 17, 25]. The
approach in this paper is mainly based on [8); some new examples of truss
designs are given in the course of the paper.

The paper is organized as follows. Section 2 introduces the theory of CO
including the main duality results for CO. Section 3 is devoted to the TTD
problem. A nonlinear and a linear model of the single load TTD problem are
derived in Section 3.1. In this section we give three examples of truss designs.
A fourth example is used to demonstrate the instability of the design with
respect to additional loads, in Section 3.1.7. The same example is used in
subsequent sections to show how more stable designs can be obtained.

Based on a variational principle, introduced in Section 3.2.1, we derive a model
for the TTD problem that enables us to deal with the multi-load casc, i.e.,
the case where we want to design a truss that is able to withstand a finite
set of different loads in the best possible way. The model is a conic opti-
mization model, of the semidefinite type. A simple example of a multi-load
design is presented, and it is shown that the new design may be very sensitive
to small occasional loads. Finally, to make the design less sensitive to such
perturbations in the load, in Section 3.2.4 we make use of a recently developed
modelling technique (sce, e.g., (3,4, 6, 7, 9, 10, 11, 12, 14, 15, 21]) that yiclds
a very robust design.

2 Conic optimization

The general form of a conic optimization problem is as given by (CP). In this
section we start with a discussion of the conditions on the cone K, and we
review the three most important cones. Then we deal with the main duality
results for CO. It will become clear that under some mild conditions the duality
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theory for CO closely resembles the well known duality theory for LO.

2.1 More on convex cones

Recall that a subset K of R™ is a cone if

ae,A20 = ek, (1)
and the cone K is a convex cone if moreover

a,d eK=a+ad €ek. (2)

We will impose three more conditions on K. Recall that CO is a generalization
of LO. To obtain duality results for CO similar to those for LO, the cone K
should inherit three more properties from the cone underlying LO, namely the
nonnegative orthant:

RT:{(I,':((I?l,...,Im)T : Iizoyi‘_‘lv’"am}'

This cone is called the linear cone. The lincar cone is not just a convex cone;
it is also pointed, it is closed and it has a nonempty interior. These are exactly
the three properties we need. We describe these properties now. A convex
cone K is called pointed if it does not contain a line. This property can be
stated equivalently as

aeK, —aeK=a=0. (3)

A convex cone K is called closed if it is closed under taking limits:
aiEIC(izl,2,...),a=igrgoai@a€K. (4)
Finally, denoting the interior of a cone K as int K, we will require that
int K # 0. (5)

This mcans that there exists a vector (in K) such that a ball of positive radius
centered at the vector is contained in K. In conic optimization we only dcal
with cones K that enjoy all of the above properties. So we always assume that
K is a pointed and closed convex cone with a nonempty interior. Apart from
the linear cone, two other relevant examples of such cones are

1. The Lorentz cone

L"={zeR™ : g, >/2?+...+22_,}.

This cone is also called the second-order cone, or the ice-cream cone.
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2. The positive semidefinite cone ST. This cone "lives” in the space 8™ of
m X m symmctric matrices (cquipped with the Frobenius inner product
(A,B) = Tr(AB) = 2-i; AijBi;) and consist of all m x m matrices A
which are positive semidefinite, i.c.,

Sp={Aes™: Taz >0, Yz eR™}.

We assume that the cone K in (CP) is a direct product of the form
K=x! X...ox K™,

where each component K is either a linear, a Lorentz or a semidefinite cone.

2.2 Conic Duality

Before we derive the duality theory for conic optimization, we need to define
the dual cone of a convex cone K:

}C.={/\€R’":/\Ta20,\7'a€}€}. (6)
We recall the following result from 8].
Theorem 2.1 Let K C R™ is ¢ nonempty cone. Then
(1) The set K, is a closed convez cone.
(i) If K has a nonempty interior (e, mtK #9) then K, is pointed.
(i) If K is a closed conver pointed cone, then int K, #£ 0 .

(iv) If K is a closed convex cone, then so is K,, and the cone dual to K, is
K itself.

Corollary 2.2 If K ¢ R™ is a closed pointed convex cone with nonempty
intertor then so is K,, and vice versa.

One may easily verify that the three cones introduced in Scction 2.1 are self-
dual. The dual of a direct product of convex cones is the direct product of
their duals, i.e.,

K=K'x..xKk™ = IC*=IC,{><...><}C1".

As a consequence, any direct product of linear, Lorentz and semidefinite cones
is sclf-dual.

Now we are ready to deal with the problem dual to a conic problem (CP). We
start with observing that whenever z is a feasible solution for (C'P) then the
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definition of K, implies AT (Az — b) > 0, for all A € K., and hence z satisfies
the scalar inequality
ATAz > ATb, VYreK,.

It follows that whenever A € K, satisfies the relation
ATd=¢ (7)

then one has
Tz =(ATNT Tz =2TAz > ATb = bT)

for all z feasible for (CP). So, if A € K. satisfies (7), then the quantity b7\ is
a lower bound for the optimal value of (CP). The best lower bound obtainable
in this way is the optimal value of the problem

max {bT,\ c ATh=¢ Me zc.}. (CD)
AER

By definition, (CD) is the dual problem of (CP). Using Theorem 2.1 (iv),
one casily verifies that the duality is symmetric: the dual problem is conic and
the problem dual to the dual problem is the primal problem.

Indeed, from the construction of the dual problem it immediately follows that
we have the weak duality property: if x is feasible for (CP) and X is feasible
for (CD), then

cfz —bTA>0.

The crucial question is, of course, if we have equality of the optimal values
whenever (CP) and (CD) have optimal values. Different from the LO case,
however, this is in general not the case, unless some additional conditions are
satisfied. The following thecorem clarifies the situation. For its proof we refer
again to [8]. We call the problem (CP) solvableif it has a (finite) optimal value,
and this value is attained. Before stating the theorem it may be worth pointing
out that a finite optimal value is not necessarily attained. For example, the

problem
r 1
min{x : ( ¥ > bt 0}

has optimal value 0, but onc may easily verify that this value is not attained.
We need one more definition: if there exists an x such that Az —b € int K then
we say that (CP) is strictly feasible. We have similar, and obvious, definitions
for (CD) being solvable and strictly feasible, respectively.

Theorem 2.3 Let the primal problem (CP) and its dual problem (CD) be as
gwen above. Then one has

(@) a. If(CP) is below bounded and strictly feasible, then (C D) is solvable
and the respective optimal values are equal.

Pt e T rp
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b. If (CD) is above bounded and strictly feasible, then (C' P) is solvable,
and the respective optimal values are equal.

(1) Suppose that at least one of the two problems (CP) and (CD) is bounded
and strictly feasible. Then a primal-dual feasible pair (x, A) is comprised
of optimal solutions to the respective problems

a. if and only if ¥ A =Tz (zero duality gap).
b. if and only if \T{[Az —b) =0  (complementary slackness).

Note that this result is slightly weaker than the corresponding result for the
LO case. In the LO case the same thcorem holds by putting everywhere
"feasible” instead of "strictly feasible”. The adjective ”strictly” cannot be
omitted here, however. For a more extensive discussion and some appropriate
counterexamples we refer to [8].

3 The truss topology design problem

A truss is a mechanical construction comprising thin elastic bars linked to
each other, such as an electric mast, a railroad bridge, or the Eiffel tower.
The points at which the bars are linked to cach other are called the nodes
of the truss. A truss can be subjected to an external load - a collection of
simultaneous forces acting at the nodes, as shown by example in Figure 1.
Somc nodes of the truss are fixed nodes (like the nodes A, B and A’ in the
figure), whereas the remaining nodes are called free nodes. In some of the free
nodes (nodes C, C’ and E in the figure) an external load acts on the truss.

Figure 1: A simple planar truss with a load
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Under the load. the truss deforms a bit, until the forces in the bars caused by the
deformation, compensate the external forces. When deformed, the truss stores certain
potential energy; this energy is called the compliance of the truss with respect to the
load. The less the compliance, the more rigid the truss is with respect to the load in
question.

Our goal is to design a truss of a given total weight best able to withstand a given
load. We call this the TTD problem.

This section is organized as follows. First we derive a linear model for the single load
case and give some examples. ;From the examples it becomes clear that the solution
obtained from the linear model can be very instable with respect to occasional small
additional loads. This makes it necessary to consider the case of multi-loads. This
case cannot be modelled in a linear way, but we can do it by using a semidefinite
model. To makes such a model robust against arbitrary perturbations (of limited
size) in the load we need another semidefinite model.

3.1 A nonlinear and a linear model of the single-load TTD
problem

3.1.1 Force and potential energy in a single bar

To start with, let us look in more detail at what happens with a bar in the truss, due
to the displacements of the nodes in the truss when the external forces are working.
Consider a particular bar AB in the unloaded truss. Let AA and AB denote the
displacements of the nodes A and B. Defining

Figure 2: A bar before (solid) and after (dashed) load is applied.

z=B~A, Az=AB-AA

and assuming that AA and AB are small relative to ||AB|| = ¢, a first order approx-

imation of the elongation A of the bar is given by

zTAx
flzll

Al = (8)

ti

el

el

wl
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Let £ denote the length of the bar, so £ = ||z||. The tension caused by the elongation
is given by Hooke 's law:

Al T Ax
0= K— = K——, (9)
¢ i)

where « is a characteristic of the material (known as Young's modulus). Hence, if
Sap denotes the surface of a cross-section of the bar, then the magnitude of the force
caused by the elongation, is given by

t zTA
lF':UXSAB=UAe§=ﬂtAB'—“—z“—:, (10)

where ¢ 45 denotes the volume of the bar. Thus, the force caused by the bar at node
A is given by

z zTAx
F = Fl———zlitAB——I, (1])
! fl=ll fzf*
and the force at node B is —F.
It will be convenient to associate the vector
I
Bap = VE—
izl

to the bar AB. Note that, given x, the vector S4p contains information both on the
direction of the bar AB (the same as S45) and the length of the bar, since

oV
10asll = o

The tension in the bar can then be written as
zfAz
[P hadiianind
2

ll=ll

= Vk Az Bag, (12)

and the force at A caused by bar AB is given by

T Az "
F=rtap —— z=tap (Az"Brp) Ban- (13)
z

Now we can deal with the potential energy stored in the bar as a result of its elonga-
tion. ;From mechanics we know that this energy is given by!

LIF| x Ab=302TF = Lt 45 (AzT45)° . (14)

'Let § be the elongation of the bar (0 < ¢ < A¢). The force necessary to maintain this
elongation is given by £ for some material constant v. When increasing the elongation with
d¢ the additional amount of energy stored in the bar is 7£df. Hence, when reaching the
elongation Af, the total potential energy stored in the bar is given by

at
/ yedE = §9€ |3 = $v(A0* = LFA,
0

where F denotes the force corresponding to the elongation A#,.
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3.1.2 Forces and potential energy in the whole truss

Let V (V}) denote the set of (free) nodes in the truss. For each node v € V, Av will
denote the displacement of v. Note that v € R? if the truss is planar, and v € R3
if the truss is spatial. Below we assume that v € R?, with d € {2,3}. If v is a fixed
node then Av = 0, so Av can be nonzero only if v is a free node.

We denote by AV the concatenation of the vectors Av in the free nodes, and use
the notation AV (v) = Av. Then Av € R? and AV € R¥Y/!, The external load is
considered to be a vector in the same space: f € R4Y71; 5o f(v) denotes the external
force in the free node v.

It will be convenient to consider a bar as an ordered pair of nodes; thus we assign a
direction to each bar (in an arbitrary way). Then any bar has the form (v, w), where
v,w € V. The vector B,., € R is then given by

w-—-v

Bow = VE ———;,
lw = v}®

and, by (13), the force realized by bar (v, w) at node v is given by
tvw ((Aw - Av)T ﬁvu') ﬂvw = tvw (A“)Tﬂvw + AU'IVB‘IUU) ﬁvuﬁ

Let A denote the set of all bars. For each bar a = (v,w) € A we define a vector
buw € RV according to

ﬂvun fu= w,
buw(u) = "“ﬂvw = ﬁwu, ifu= v, ue Vf (l())
0 otherwise.

Then the force realized by bar (v, w) at node v can be written as

Low (Aw’l‘ﬁuw + Av’rﬁwu) ,va =ty (Awauw(w) + Avq'bvw(v)) va
= lyw (AVTbvw) ﬁvw
= tyw (AV 7 byw) byw (V).

Consequently, the total force at node v, caused by the clongations of the bars con-
nected to v, will be given by

Z tuur (Avrl.bnw) bvw(“) = Z tuu/bvw(v)bz‘w AV,

{v,w}eA {viw}e A

where {v,w} € A is a short-hand notation for either (v,w) € A or (w,v) € A. The
above expression is a vector in R?, as it should. By concatenation of all these vectors
we get the vector

Yot (BV ) bow = | Y tuwbiubl, | AV
{vw}cA {vw}eA

This vector represents the forces acting from within the truss on its free nodes. In
equilibrium, these forces have to compensate the external forces acting at the free
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nodes. This implies that the following equation should be satisfied:

( > twbvwaw> AV = f.

{viw}eA

The matrix

A= Y tuwbsubl, (17)
{vwjeA

is called the bar-stiffness matrix of the truss. This is an |A4| x |.A| matrix. Note that
the bar-stiffness matrix depends linearly on the volumes of the bars. We conclude that
in equilibrium the displacements vector AV will satisfy the following linear system of
equations.

Alt)AV = f. (18)

Remark 3.1 The |V;| x |A] matriz B whose columns are the vectors b, is called
the node-bar matrix of the truss. This matriz depends on the truss alone, i.e., on the
bars and their volumes. Note that we have the following simple relation between the
node-bar matriz and the bar-stiffness matriz:

A(t) = Bdiag (¢t) BT. (19)

To complete our model, we should also find an expression for the compliance, i.e. the
potential energy stored in the truss. According to (14) and (16) this potential energy
is given by
Comply(t) =1 3t (AVTbou)". (20)
{viw}leA

Using (17) and (18), this can be reduced as follows:

Comply(t) = AV | Y~ tyubuubl, | AV
{viw}€eA
= LAvTA@)AV = § fTAv. (21)

Remark 3.2 From a physical point of view it seems to be clear that Compl (t) de-
pends on t and f only, and not on AV. From a mathematical point of view, however,
this is not evident, since the equilibrium equation (18) may have more than one so-
lution (or no solution at all). If (18) has no solution, then this means that the truss
t cannot carry the load f: it is crushed by this load. In this case it makes sense to
define Compl(t) = oo. Now suppose that (18) has two solutions: x, and z5. So,
A(t)ry = A(t)zy = f. Let z = z, — x9. Then A(t)z = 0. Letting T = diag(t), we
thus have BT B'z = 0. This implies tT BT BTz = 0, whence ||TY B z|| = 0. Hence
we have bz = 0 whenever t,,, > 0. In other words, if t,, > 0 then bT 7y = b z,.

Therefore,
Y ot (@)’ = Yt (5T

{v,w}€A {v.w}eA

Because of (20) this proves the claim.
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by (26). One has

ffav & 8N g bl,av
{vw}e A
lg” I, T llg™ | llg* Iy
- Wk s bl ave = 1 vl = 1L
w Z Ty Oy Z Iq | w

{v,w}€eA v {v,w}leA

Thus it remains to show that if t and AV are arbitrary feasible solutions to (22), then

12
rav 2 100 (27)
w

where ¢* is any optimal solution of (24). To show this we introduce variables gq,,, as

follows: ]
Qow = tow (AV b)), V(v,w) € A

The vector ¢ = (guw) (v,w)e.4 is feasible for (24), because

Qwauwz tyw AV'Tb'uw b‘uw
> > tow )

{viw}l€e A {vw}eA
{v,w}cA
Since ¢* is optimal for (24), we conclude from this that

lgll, > lig™l, - (28)

The last step in this analysis consists of showing that (28) implies (27). From (20),
(21) and the definition of q,,, we deduce that
1AV S 0, (aVTh,) = Y T

t
{v,w}ec A tuw>0 VW

Using the Cauchy-Schwarz inequality we obtain

lall} = ( > |qw|>2 = ( > (tnd o) zéw>2

tyw >0 tyw>0
2 2
q q
s ( Z tvw Z bow | Sw Z tvw.
tyw>0 VY tyw >0 tow>0 Y%

The last inequality follows since ¢t is feasible for (22). Since w > 0, we obtain, also
using (28),

G o lalls o Nl

s 1> L

t w w
ty >0 W

proving (27). Thus we have shown that optimal solutions of the linear problem (23)
and its dual (24) contain all the information we need to obtain an optimal solution
of the nonlinear problem (22).

b

1i;

tw

It |
1S ]

In
(24

is al
tivit

Inde
A(Y)

Thus
value
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Obviously, the dual problem is feasible if and only if the vector f of external forces
belongs to the span of the vectors b,,,. We will make this natural assumption. The
primal problem is feasible as well (take AV = 0). Hence, by the duality theorem for
linear optimization, both problems have optimal solutions and their optimal values
are equal. If AV is primal feasible and ¢ dual feasible, then we may write

fTAV = 37 qulVTbu < Y lgwl |AVTb,,]
{v,w}eA {vw}eAd

< S vl = llall;

{v.w}eA

Hence, AV and g are optimal, for (23) and (24) respectively, if and only if the above
two inequalities hold with equality, and this holds if and only if

QowAV by = |quu], Y (v,w) € A. (25)

It is worth pointing out an interesting consequence of this result, namely that if AV
is primal feasible and ¢ dual feasible then these solutions are optimal if and only if:

for every bar {v, w} with q,., # 0 one has [AVTbvwl = 1; in other words,

all such bars have the same tension, namely 1/
3.1.5 Correctness of the linear model
In this section we show that if AV* and ¢* satisfy (25) (i.e., are optimal for (23) and
(24) respectively) then

=Tl Ay 2 1 gy (26)
lla*ll, w

is an optimal solution to our original quadratic model (22). Obviously, the nonnega-
tivity constraint ¢ > 0 and the volume constraint in (22) are satisfied:
: las!
Z tow = W h—z(l'r}fr .
{viw}eA Iq Il
Indeed, the volume constraint is tight! Furthermore, using (17) (i.e., the definition of
A(t)), (25) and (26) we may write

AR)AV = Z towbuwbl, | AV
{v,w}eA
LY Bt (LAY = 3 (gl (B,AV7)
{viw}eA Guw#0
(25) 5™ 020 buu lqzwl =S bougsy @ 1
Qu 70 w0

Thus we have shown that (26) is feasible for (22). It remains to show that the objective
value fTAV is minimal. We start with computing this value for the solution given
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becomes:
b1z bia  bis  bie  bas  baq  bas bzg  bag  bzs  big  bss  bse
M 20 0 -4 -5 T
1 0 ~10 -8 =5
20 -20 4 0 -4
2 0 0 -8 —10 -8
20 5 4 0
3 0 -5 -8 -10
[ -4 -5 -20
4 10 8 5 0
4 0 - 20 20
5 8 10 8 0 0
‘ 5 4 0 20
v L 5 8 10 o |

The non-indicated entries are all zero. By removing the rows corresponding to the
fixed nodes (i.e., node 1 and node 3), we get the matrix B as given below,

biz 614 bis brg b2y bas  bzs  bzg b3q bz bas bas bse

20 20 4 0 -a p
2 0 0 -8 -10 -8 W
_ o 4 -5 -20
= 10 8 5 0
4 [§] 4 20 ;a
2 8 10 8 0 0
5 4 [} 20
6 5 8 10 0
where we have also depicted the vector f as given below,
r o e
~10
o nc
f= o By
> | nc
ler
0
0
o ]
With B and f as just given, and with w = 1, the solution of the problem (24) is as
follows: N We
5 5 ! no.
q= (0,07*‘§,0,0,0,1,0,0,"'5,0,0,0) fixe
f
and the solution of (23) is given by ;)n
AV = (0,-0.225,0.027, —0.091,0, -0.125, —0.027, —0.092)T . As:

Using (26) we construct the optimal solution of the nonlinear model, which gives

(with w = 1):
5 8 5
L= <0,0, _1—8_’0‘0‘0’ Ey010’ ﬁaoaowo)
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3.1.6 Three examples

Vertical load on two parallel walls Let us start by considering the following
simple example where one has two parallel walls, with the same height and at distance
1 meter from each other. One wants to make make a vertical {flat, i.e., 2-dimensional)
construction on the wall that should carry a load of 10 Newton. See Figure 3. For
that purpose a fixed amount of 1 unit of material is available. To obtain the stiffest

Figure 3: Two walls that necd to carry the load as indicated .

possible construction, let us use a equidistant grid of size 3 x 2 of height 1 meter,
whose vertices are then given by (3,7), ¢ = 0,1,2 and j = 0,1. See Figure 4. The

4 5 6
1 J2 3
S

Figure 4: A 3 x 2 grid with external force in node 2.

nodes are numbered as indicated.

By way of example, let us compute vector 3,2, assuming k£ = 100. This bar’s end
nodes are 1 and 2, whose coordinates are (0,0) and (3,0) respectively. Since the
length of this bar is 1/2, using (15) we find

Bi2 = V100 x ..1._2_ (%) _ (20)'
(3)"\0 0

We can form the vector b2, as defined by (16). For the moment we assume that all
nodes are free! Then b5 is the first vector in the scheme below. Note that node 1 is
fixed, hence, according to the definition in (16), the corresponding (first two) entries
of b3 should be removed. We will deal with this later, simply by removing all entries
in the rows corresponding to fixed nodes.

Assuming that all nodes are free, the matrix consisting of all column vectors b;;
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NN
5\:&,&‘@( 6
X

/
b

Figure 6: A 3 x 3 grid with external force in node 6.

Using (26) we construct the optimal solution of the nonlinear model, which gives
(with w = 1):

.
‘= (0.0,0,%,0,0.0,--~,o,o,%,o,0,o,0)

and

AV = —(0.1242,0.2777,0.2091, 0.5351, 0, 0.1946,
0, 0.6250, —0.1246, 0.2775, —0.2093, 0.5352) "

(From this we can compute the compliance:
Comply(t) = 3fTAV = § x (~10) x (=0.6250) = 3.1250.

The corresponding truss is shown lefi in Figure 7. Among trusses based on an D Xq

Figure 7: Trusses based on (a) 3 x 3 and (b) 21 x 17 grid.

grid, with 2 < p < 21 and 3 < ¢ < 21 (g odd), the 21 x 17 grid gives the lowest
compliance, namely 2.9594. The corresponding truss is shown at the right in Figure
5. The next best grid is 19 x 19, with compliance 2.9599.

and



CONIC OPTIMIZATION, WITH APPLICATIONS TO {ROBUST) 359
TRUSS TOPOLOGY DESIGN

and
AV = (0,-0.5062,0.0597, -0.2049, 0, —0.2812, —0.0615, -0.2068)T .

(From this we can compute the compliance:
Comply(t) = 3 fTAV = } x (~10) x (-0.5062) = 2.5312.

The corresponding truss is shown left in Figure 5. It may be clear that lower compli-

-G.6; -0

0 0.2 0.4 0.8 LR 1 @ 0.2 0.4 0.6 08 1

Figurce 5: Trusses based on (a) 3 x 2 and (b) 17 x 21 grid.

ances may be expected when using a finer grid. For example, when using a 17 x 21
grid the compliance is 0.8359; the corresponding truss is shown at the right in Figure
5. Among trusses based on an p x ¢ grid, with 3 < p < 21 (p odd) and 2 < ¢ < 21,
the 17 x 21 grid gives the lowest compliance. The next best grid is 17 x 20, with
compliance 0.8376.

Vertical load at one vertical wall In our second example we consider the
situation where a vertical load has to be carried by one vertical wall, by using a (Hat
2-dimensional) truss that is fixed to one side of the wall. As before, we assume that
the height and the width of the truss are 1 meter, that the acting force is 10 Newton
and that an amount of 1 unit of material is available. See Figure 6, which shows an
equidistant 3 x 3 grid for this problem; the vertices are given by (3 %), i=0,1,2 and
7 =10,1,2. The nodes are numbered as indicated. The fixed nodes are numbered 1,
4 and 7, and the force is acting in node 6, as indicated. The solution of the problem
(24) is as follows:

5 5 .
q= <0a0v01—11070)07"'10101Zy070w0w0>

and the solution of (23) is given by

AV = —(0.0497,0.1111, 0.0836, 0.2140, 0, 0.0778,
0,0.2500, —0.0498,0.1110, —0.0837,0.2141)7 .
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given by 8
cl
of
biz bis bia baz baa b3 a
of
10
B= ) 10 0 0 5 0 0 Cf= tl
0o 0 0o -5 -10 0 —0.005 w
. at
o 0 5 0 010 10 re
41 o0 5 0 10 0 0.010 tk
F
Note that if the two vertical components in f, were zero, then an optimal truss would is(
only use the two horizontal bars, both with half of the total volume w. But such a
truss would not be able to carry the vertical components of the forces in the right
nodes, and it would crash. Mathematically this means that then the problem (24) is
infeasible, and problem (23) unbounded. In the present case the optimal solution of
these problems are respectively given by
1
0 0.1
0.0010 0
q = , AV® = | —
0 0.1
0.0005 0.1
0.9995
Using (26) we derive from this the optimal solution of (22), with w =1 and lg*ll, =
2.001, which gives
1 od
tr
0 0.1
1 0.0010 0
b= —— AV =2001]) — 3.
2.001 o1’ .
0.0005 0.1 B:
0.9995 wl
- tw
and Comply, t) = %f{ AV = 2.0020005. Figure 10 shows the optimal truss in the ar
unloaded and loaded case, respectively. in
The optimal truss is designed for the given load. One may wonder how it behaves
when it is loaded with an occasional load that differs not too much from the design
load. We will demonstrate below that very small perturbations in the load may have
a disastrous effect on the compliance. To make this clear, let g be an eigenvector of
A(t) with eigenvalue A. So we have A(t)g = Ag. Let f denote the design load of the
truss and AV the corresponding displacement. Without loss of generality we assume
that (|g] = lIfll and f¥g > 0. Now consider the situation that the design load is
replaced by
fy=r+9
for some v > 0. Then the displacement AV (7) under the load follows by solving the th

equation A(t)AV (7) = f + g, which gives
AV(7) = AV + -}g.
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Uniformly loaded bridge In our third example we want to design a bridge that
crosses a river. The bridge rests on the shores of the river and it has to carry a load
of 10 N, which is assumed to be uniformly distributed over the whole bridge. We use
a p x q grid, with the lower left and lower right node fixed, and with external forces
of size 10/(qg — 2) in the remaining lower nodes of the grid. As before, we assume
that the height and the width of the truss are 1 meter. and that an amount of 1
unit of material is available. Since the solution t of problem is proportional to the
amount of material the sizes of the bars in the truss can be easily adapted to more
realistic values. A similar argument applies to the chosen size of the forces acting on
the bridge and to the size of the grid.

For a 6 x 21 grid the corresponding solution is shown left in Figure 8. Its compliance
is 0.5000. Among trusses based on an p x ¢ grid, with 3 <p <2l and 3 < ¢ <21 (¢

Figurc 8: Trusses based on (a) 6 x 21 and (b) 21 x 21 grid.

odd), the 21 x 21 grid gives the lowest compliance, namely 0.3601. The corresponding
truss is shown at the right in Figure 8.

3.1.7 Instability with respect to additional loads

By way of example we consider a very simple truss, based on a 2 x 2 square grid, for
which the left nodes are fixed, and with external forces in the two right nodes. The
two external forces have a horizontal component 10, and vertical components 0.005
and —0.005 in the upper and lower right node respectively. The situation is depicted
in Figure 9. The nodes are numbered as indicated. The matrix B (for £ = 100) and

3 e

. = /(2)
Figure 9: A 2 x 2 grid with external forces in nodes 2 and 4.

the vector f = f;, with the entries corresponding to the fixed nodes removed, are
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Figurc 11: Instability of the truss w.r.t small occasional load.

which amounts to only 0.25% of the design load size || f1]]; the new compliance value
is 2.12047, which means an increase of 6%.

It is clear from the above example that small eigenvalues of the matrix A(f) may
give rise to instability of the truss: a small perturbation of the load may cause a
large increase of the compliance. Thus we may conclude that for a stable truss the
eigenvalues of the matrix A(t) should be bounded well away from zero.

Recall from (19) that the bar-stiffness matrix A(t) was given by

A(t) = Bdiag () BT = Y tuwbyubly, = Y tibib!,
{v.w}e A i=1

where B denotes the node-bar matrix of the truss and ¢ the bar-volume vector of the
truss. The equation (18) will have a unique solution only if A(t) > 0. This together
with the above observations more than justifies the following assumption, which we
assume to be satisfied in the sequel.

Assumption 3.3 Ift, >0 fori=1,...,n, then A(t) » 0.

Note that this is also a physically meaningful assumption. It excludes rigid body
motions of the ground structure: if all rigidities are positive then the potential energy
stored by the structure under any nontrivial displacement is strictly positive.

3.2 Multi-load and robust versions of the TTD problem

In the previous sections we managed to derive a linear model for the TTD problem
which turned out to be equivalent to the earlier proposed nonconvex quadratic model.
A enlightening explanation of this very pleasant phenomenon is given in {8]. The
explanation is based on a conic quadratic model of the TTD problem; this model

Il
Fr

Fc
I
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Figure 10: The optimal truss, unloaded (grey) and loaded (black).

The new compliance is then given by

1 T 2 ¥ 2
Comply(,) (1) = 5 (f +79)" (AV + Tg) = Comply () + - I/
Here we used that fTg > 0 (and hence also g7 AV > 0) and ¢¥g = ]]fHZ We see
that the effect on the the compliance of such a perturbation of the load may be large
if the eigenvalue is small. In our case, the bar-stiffness matrix A(t) is given by

100 0 0 0
» 1 0 005 0 —0.05

A(t) = Bdiag (t)B" = —— ° ° (29)
2.001 0 0 99975 0.025

0 -0.05 0.025 0.075

Its smallest eigenvalue is 0.00548, and a corresponding eigenvector g such that ||g]| =
17 and fTg > 0 is given by

g = |f]l (0.00000, 0.78819, —0.000154, 0.61544)" .
From this we derive that
Comply,(t) 2 Compl(t) + 18259 52,

For v = 0.025 (which amounts to a perturbation of 2.5%) the compliance becomes
more than 13. For v = 0.0025 the perturbed load becomes

10.000000
2 0.022867

fo= —_—— (30)
4 9.999995
0.031759

Figure 11 shows the loaded truss under f;. The perturbation of the load is v ||g],
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Lemma 3.4 Compl,(t) < 7 holds if and only if
LAVTAAV - fTAV +7 20, VAV.
Proof: By (32}, Compl,(t) < T is equivalent to

sup [fTAV - 1AVTA()AV] <
AVER™

Clearly, this holds if and only if the quadratic form

IAVTAWAV - fTAV + 7

is nonnegative for all AV € R™. 0
Theorem 3.5 Complf(t) < 7 holds if and only if
-
2t f = 0.
J A(t)
Proof: This immediately follows from Lemma 3.4 and Lemma A.1. a

3.2.2 Semidefinite model for the multi-load TTD

The semidefinite representation of the compliance, as given by Theorem 3.5, enables
us to formulate the TTD problem as a socalled semidefinite optimization problem:

2T fT

n
min{ T : - + =0, t;<w, t>0 33
DY NI (33
i=1

7.t

In the multi-load case we assume that that the set F of loading scenarios is a finite
set,

F={fi,---. fx}-
A big advantage of the above model is that it can be easily adapted to obtain a TTD
that can withstand the loads f; in F (not acting at the same time) in the best possible
way.

T
2r —fj n
n

n;ntn T : —ijbit,-b,T t(),]——-l,...,k,Zt,-Sw,tZO . (34)

i=1
i=1

The design variables are t; € R,,i=1, ..., n, and 7 € R. Indeed, the linear matrix
inequalities (LMI's) in (34) express the fact that the worst, over the loads f, ..., f,
compliance of the construction yielded by the rigidities ¢,, ..., t,, does not exceed
7, while the linear constraints express the fact that t = (¢;, ..., t,) is an admissible
design.
A crucial question is, of course, if we can solve these models efficiently! The answer
is affirmative, as has become clear in Section 3.2.3 .

Sir
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can be easily extended to the multi-load case. But only in the single-load case it
naturally shrinks down to a linear model. This suggests that whenever a truss has to
be designed that can withstand a finite set of (more than one) loads a linear model
will not suffice.

In this section we consider the multi-load case, i.e. the case where we want to design a
truss that is able to withstand a finite set of different loads in the best possible way. We
show that an optimal truss can be obtained by solving a semidefinite minimization
problem. Robust designs are obtained by allowing the set of loads to be infinitely
large, but where the set is of a special form. Below we deal with ellipsoidal sets of
loads. It will turn out that this case can also be modelled by a simple minimization
problem, with only one semidefinite constraint,

The models in this section are based on a simple variational principle that will be
introduced in the next section.

3.2.1 Variational Principle

Given a truss ¢ and an external load f we define the potential energy E, ((AV) of
the loaded system as a function of the displacement AV as follows:

E f(AV) = L AVTA()AV - fTAV

1 AV'Bdiag (t) BTAV ~ fTAV. (31)

Since t > 0, the matrix A(t) is positive semidefinite, and hence E: s(AV) is a convex
function. As a consequence, this function is bounded below if and only if its gradient
vanishes for some AV, i.e., if and only of there exists AV such that

A)AV = f.

Note that this is exactly equation (18), the equation for equilibrium. Thus we obtain
the following Variational Principle:

The equilibrium displacement of a truss ¢ under an external load fisa
minimizer of the quadratic form

s AVTA@MAY -~ fTaV

in the displacement AV if this quadratic form is unbounded below, there
is no equilibrium at all.

This is a typical variational principle in mechanics and physics. Such principles state
that equilibria in certain physical systems occur at critical points (in good cases at
minimizing points) of certain energy functionals. Variational principles are extremely
powerful; in mechanical, electrical and other applications an issue of primary impor-
tance is to identify a tractable variational principle governing the model.

Note that in equilibrium, the (minimal) value of the energy function is given by
-3 fTAV. Thus, using (21), we obtain

—Compl (t) = min (GAVTA@RAV - fTAV). (32)

As a consequence we have the following lemma, which needs no further proof.
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For v = 0.01 the perturbed load becomes

10.000000
2 | -0.127949 )
fs= —. (36)
4 | 10.000192
~0.059882

Figure 13 shows the loaded truss under f3; The increase in the load size is v ||g||,

%

Figure 13: Instability of the multi-load truss w.r.t small occasional load.

which amounts to only 1% of the design load size || f||; the new compliance value is
2.25312, which means an increase of about 12.5%.

3.2.4 The robust TTD problem

We finally consider the socalled robust TTD problem, where we assume that the set
of loads F is an ellipsoid:

.7-‘={f=Qu:uTu$1}, Qe M™*P, (37)

The matrix Q has to be chosen such that the ellipsoid F contains all possible loads
that the truss has to withstand. Since the set F is infinite, we meet a difficulty not
present in the case of finite F, namely that the objective now is to minimize

Complg(t) = sup Compl,(t), (38)
feF

which is the supremum of infinitely many SDR function. Fortunately, it is nevertheless
easy to get an SDR for Complx(¢).
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3.2.3 Example of a multi-load truss

We turn back to the problem considered in Section 3.1.7. In that section we considered
the single load truss for the design load f;, and we also subjected the resulting truss
to the load fz, as given by (30). Thus these forces are given by

10.000000 10.000000
2| ~0.005000 2 | 0.022867
fi= |—], R= |1 (35)
4 | 10.000000 4 | 9.999995
0.010000 0.031759

Using the same grid as there, we can now optimize the truss with respect to both
loads by solving (34) for £ = 2 and f, and f> as just given. The optimal multi-load
truss £ with respect to these loads, when loaded with one of these loads, behaves as
depicted in Figure 12. The compliance of the truss with respect to f) is 2.012455,

Figure 12: Multi-load truss subjected to the two separate design loads f; (left)
and f2 (right).

and with respect to f» is the compliance 2.015527 (which is also the optimal value of
problem (34). Comparing the right figure in Figure 12 with the behavior of the single
truss load under fs, as depicted in Figure 11, we see that the new truss withstands
this load considerably better.

Note that this result does not imply that the new truss is stable with respect to other
small perturbations of the load. In fact, this is not the case. To obtain a perturbation
for which the truss is most sensitive we use the same approach as in Section 3.1.7.

For the new truss the smallest eigenvalue of A(t) is A = 0.049163 and the correspond-
ing (normalized) eigenvector g such that [lg|l = || f;]] and f{g > 0 is given by

g = || 11| (0.00000, —0.86938, 0.00135, —0.49413)" .
Using the notation of Section 3.1.7, we replace the design load by

f(¥) = fi + g,
with v > 0. Then the compliance with respect to f(7y) satisfies

Comply(,(t) > Compl, (t) + %i A ”2 ~ Compl;, (t) + 2034 +°.
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1 LO (1L) { SDO (2L) | SDO (3L) | SDO (Rob.)
2 ti2 0.4998 0.4981 0.4876 0.4576
3 t1s 0 0 0 0
4 tia 0.0005 0.0054 0.0007 0.0377
5 tas 0 0 0.0156 0.0377
6 taa 0.0002 0.0011 0.0024 0.0093
7 taa 0.4995 0.4954 0.4937 0.4576
8 | Design Compl. 2.0020 2.0155 2.0519 2.1631
9 | Compl. w.r.t fy 2.0020 2.0125 2.0378 2.1548
10 | Compl. w.r.t fp 2.1205 2.0155 2.0155 2.1560
11 | Compl. w.r.t f3 3.7790 2.2531 2.0519 2.1609
12 /\I""ilu (A()) 182.5928 20.3405 17.2258 1.0820

Figurc 14: Optimal trusses and their compliances.

both loads. The obtained truss turned out to be instable with respect to the load fs,
as defined by (36). The just mentioned results of these sections are summarized in
the second and third column of the table in Figure 14.

The rows 2-7 give the volumes of the bars, row 8 the value of the compliance for
the design, and rows 9-11 the actual compliance with respect to the loads f,, fs
and f3 respectively. The last row gives the inverse of the smallest eigenvalue of the
bar-stiffness matrix A(t); we already have seen that this quantity can be considered
as a measure for the robustness of the truss.

The fourth column in the table gives the corresponding values for the multi-load
model {34) where the loads are now f;, fy and f3. It is depicted left in Figure 15
under the three given loads.

Figure 15: Multi-load truss loaded with f; (left), with f; (middle) and f3
(right).

Finally, in the fifth column one finds the solution of the robust semidefinite model

F
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Theorem 3.6 Let F be as given by (37). Then one has one has Compl(t) < 7 for
each f € F if and only if

271, QT
Q Y bt
i=1

Proof: With Complx(t) as defined by (38}, we may write

= 0.

Compls(t) < 7 & 3zTA(t)z — (Qu)Tz +720,Vz ¥(u : vTu<l)
e LaTA(t)z — (Qu)Tz+ 720,V ¥(u : wlu=1)
& tzT A(t)z - (Qu—t‘:—ﬂ)Tx +72>0,VzVu #0
o L(lullz)T A (el 2) — (Qu)T (lull 2) + ruTu 20,
Yz Yu.

Replacing ||ul| z by —y we obtain

Compls(t) < 7 & 27uTu+22TQ Ty + yT A(t)y 20, VyVu
.
"
- u 2rl, Q u S0, VyVu
y Q AQM) ) \v

o (¥ Q"') > 0.
Q A(t)

For the last equivalence we used again Lemma A.1. This proves the theorem. a
Theorem 3.6 enables us to model the robust TTD problem as follows:

271, Qr n
. R n . . < P
n:ltn T ) Zbit:bi[ =0, ;t,_w,tzo . (39)
i=1

This model finds the truss which is best able to withstand all the loads in the ellip-
soidal set of loads

F={f=Qu:vu<l}, QeM™™

Note that it does not tell us how to choose the matrix Q. But it is clear that we
should choose @ in such a way that the ellipsoid F contains all loads that may occur.

3.2.5 Examples of robust designs

In this final section we consider again the 2 x 2 grid of Figure 9 in Section 3.1.7,
which was also used in Section 3.2.3. In Section 3.1.7 we found the truss optimal with
respect to fi by solving the linear model (24); it turned out that this truss is very
unstable with respect to the load fa (cf. (35)). Subsequently, in Section 3.2.3, we
used the multi-load semidefinite model (34) to find the optimal truss with respect to
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Figure 17: The robust truss w.r.t a small occasional load.

structure. Then (34) is a semidefinite problem with desigu dimension n + 1, n =
O(M?) being the number of tentative bars. The problem contains k (k is the number
of loading scenarios) big LMI's (each of the row size m + 1, where m is the number
of degrees of freedom of the nodal set; m =~ 2M for planar and m =~ 3M for spatial
trusses) and n + 1 linear inequality constraints.

For a planar 15x 15 grid with the left nodes fixed, we get M = 225 n+1 = 25096, m =
420. Even an LP problem with 25.000 variables should not be treated as a small one; a
semidefinite problem of such a huge dimension is definitely not accessible for existing
software.

The situation, however, is not hopeless, and the way to overcome the difficulty is
offered by duality. The dual problems of (34) and {39) can be greatly simplified
by analytical elimination of most of their variables. For example, the dual to the
outlined multi-load truss problem can be converted to a semidefinite problem with
nearly mk design variables; for the 15 x 15 ground structure and three scenarios, its
design dimension is about 1300, which is within the range of applicability of existing
solvers.

Below we will show how this can be reached for the multi-load problem; similar
arguments can be applied to the robust problem. The outcome of the process will be
summarized, for both cases, in Section 3.3.5. Note that (34) can be restated as

2T f]l n
n
: . oy > ] = ; < > .
er).ltn T 5; Zbitibil >0,7=1, kK, 5 i <w,t>0 (41)
i=1

i=1

The only change is that we replaced fi by —f; in the LMIs; this makes no difference
and is more convenient for our purpose.

3.3.1 Building the dual

We introduce dual matrix variables

(2 7)-
vy B )

M M - o oa

Q>
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...........................................

........................

Figure 16: Robust truss loaded with f; (left), with fo (middle) and f3 (right).

(39) for the matrix

10 0 0
0 2 0
@= 10 0 0
0 0 2

This means that the obtained truss is optimal with respect to the ellipsoidal set of
loads
10u1

2 N
F=Lf=Qu=|""7 | :uveR%ulu<
10‘U1

2u3

It is depicted left in Figure 16 under the three given loads. ;From the table it is clear
that the inverse of the smallest eigenvalue of the bar-stiffness matrix is by far the
smallest when compared with the other trusses. This means that the truss should
be much more stable than the other trusses when loaded with any small occasional
load. To verify this we conclude this section by loading this truss with a load of the
form f, + yg, where g is a unit eigenvector of the bar-stiffness matrix for its smallest
eigenvalue. The smallest eigenvalue of A(t) is A = 0.924217 and the corresponding
eigenvector g such that |lg|| = || f1]| and fTg > 0 is given by

g = |If1]] (0.01457, 0.70696, —0.01457, 0.70695)" .
For v = 0.02 the perturbed load becomes

10.004122
2 0.194958
fa= — . (40)
4 9.995878
0.209958

Figure 17 shows the loaded truss under f;; The increase in the load size is v g,
which amounts to 2% of || f1]l; the new compliance value is 2.19915.
3.3 Simplifying the semidefinite models by using duality

A disadvantage of the semidefinite models (34) and (39) is their huge dimension.
Consider, for example, in the multi-load case (34) a truss with an M-node ground



372 C. Roos & D. Chaerani

Hence, the inequalities (a) and (d) imply the inequality
k
Zb?vja;lvfbi <%, i=1,...,n
i=1

On the other hand, if the last inequality holds, taking 8; = vja]-_lv}', also (a) and (d)

follow. Thus we conclude that the following problem has the same optimal value as
(43).
supremum -2 2;‘:1 fTv; —wy

such that
(b) y > 0,
k
(c) 2y oy = 1, (44)
i=1
k
(d) Zb,-rvja;lv;rb,- < v, i=1,...,mn,
i=1
(6) a; > 0, j=l,...,k.

Due to (e), and by the Schur complement lemma, the system of inequalities (d’) is
equivalent to the following system of LMIs:

(e 3] v'f‘b,-
o, 0, 1=1...,n, (45)

Qg Uébi

bl ... blue | v

Consequently, we may replace the constraints (d’') in problem (44) by (45). Note
that (45) implies a; > 0, for all i. Hence, since our problem is still strictly feasible,
omitting constraint (e) in (44) does not change the optimal value. Also note that (45)
implies v > 0, i.e. constraint (b) in (44). Thus we arrive at the final form of our dual
problem of (41):

: 3 & 7 '
maxiiwite ~2) 0, §) vy —wx

such that
[e9] U;l.bi
(a) N > 0,i=1,...,n, 5
(e U,ﬁ b,’ (46)
blu, ... b;"vk] v
k
(b) QZO’J' = 1,
i=1

We already established that both the primal problem (41) and its dual problem (46)
are strictly feasible. Consequently, both problems are solvable and their optimal
values equal.

3.3.4 Back to primal

Problem (46) is not exactly the dual of (41) - it is obtained by elimininating part
of the variables. What happens if we pass from (46) to its dual? It turns out that

D T .

~

It i
prc

Wise
we Ir
Choc
large
feasit
value

3.3.8

Since
interic
value.
constr
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for the LMIs in (41), with a; € R, 8; € S™, v; € R™, and dual scalar variables
7 € R for the weight constraint and 7, € R, for the nonnegativity constraints. The
dual problem is then given by

. k .
maximize —2377_, fTv; - wy

such that
a; vl )
a) 7 = 0, j=1,... k,
( ( v ’
(&) ¥y 2 0
(c) v o2 0, i=1,...,n, (42)
k

(d) 2) a; = 1,

i =1
(e) Zb;rﬁjbi‘*“fi*’r = 0, i=1,...,n

=1

3.3.2 Eliminating the 7;’s

It is obvious that we can eliminate the slack variables 7;, thus arriving at the equivalent
problem
maximize -2 }:521 fTv; —wy

such that

o v)") i =
a > 0, =1, ... k,
(a) ( oy ;
(0) 72 0, (43)
(C) QZQJ' = 1,

=1

k
(d) Zbirﬂjbi < 9 i=1, ...,n,

j=1

1 is worth noting that (43), and as a consequence also {42), is strictly feasible. Indeed,
we may choose arbitrary positive reals a; and by normalization, we may enforce (c).
Choosing f3; large enough we enforce strict inequality in {(a). Finally, choosing ~y
large enough also (d) will hold strictly. Since the primal problem (41) is also strictly
feasible, we conclude that both problems have optimal solutions and that the optimal
values are equal!

3.3.3 Eliminating the g;’s

Since (43) is strictly feasible, when adding the constraints a; > 0, for all j, the
interior of the feasible region does not change, and hence neither does the optimal
value. However, if a; > 0 then we may apply the Schur complement lemma to the
constraints in (a), yielding the equivalent constraints

-1.T .
via; vy 265, j=1,.... k.
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To prove the converse part of the theorem, let (t1, ..., tn, T) be feasible to (41). As
before we fix j, 1 < j < k. For every z € R the quadratic form (48) of y € R™ is
nonnegative, hence bounded below. The minimizer of this form satisfies

Allly = —zf; {A(f») = i b,»t,»b;‘}

i=1

and hence this equation is solvable for every z. This holds in particular if z = 1.
Let the vector y; satisfy

Alt)y; = f;.
Now define _
Then we have . n
Doabi= bitdly; = Alt)y, = f;. (50)
i=1 i=1

thus ensuring the validity of equation {c) in (47). It remains to show that the LMI's
(a) in (47) are satisfied as well. Thus we finally need to show that for every z € R
and for every vector £ = (£;)_, we have

F(z,§)=2r2® +2) zglti+ Y t£220. (51)
i=1 i=1
Given z, let us set

and let us prove that the vector £* minimizes F(z, £). This is easy, because F(z,.) is
a convex quadratic form, and its partial derivative with respect to & at the point £;
is equal to (see (49))

2z + 267 = 2 (zt:b]'y; ~ t,zbTy,) =0,

for all 4, proving the claim. Thus, to complete the proof of (51), we only need to show
that F(z,£*) > 0. This goes as follows:

F(z,(&);,) = 212 +2) " 2gl€; + ) b7
i=1 i=1

=2rz? ~ 2 Z :c“’quiTyj + Z IvzyJ-TbitanTyj
i=1 i=1

n 1'
=2rz? — 21 (Z q{b,) Ty; + Ty A(t)y,
=1

=2rz? — 2xf]-T:cyj + xzy}‘A(t)yj.

The last reduction used (50). Hence we write

.,‘
oo =) ()
F(z,£") = <_xyj) (fj A(t)) (—xyj)

Since (t1, ..., t,, 7) is feasible to (41) the last expression is nonnegative, and hence
the proof is complete. @]

[ R N,

fc
I
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we end up with a nontrivial (and instructive) equivalent formulation of (41), namely,
with the problem

min T
s.t. ]
2 | g %
{
(a) qlh = 0, j=1,...k
@ tn (47)
(b) Zti < w,
i=1
(C) Zq‘]b' = fj, ]'=1“..,k,
i=1

where the design variables are
e t;€ R, and T € R;
e gdeR,j=1,... ki=1 .., n

(47) is not the straightforward dual of (46); it is obtained from this dual by eliminating
part of the variables. Instead of deriving (47) in this way, we prefer to give a direct
proof of its equivalence to (41) by proving the following result.

Theorem 3.7 A collection (ty, ..., t,, 7) is feasible to (41) if and only if it can be
extended by properly chosen

{derr . i=loki=1.n}
to a feasible solution to (47).

Proof: Let (ty, ..., t,, 7) and

{q{eRP:j:l,...,k,i:l,....n}

compose a feasible solution to (47). Fixing j (1 < j < k), we should prove the validity
of the LMIs in (41). Thus we should prove that for every pair {(z,y) with z € R and
y € R™ we have

2ra? + 2z fy +y* (Z bitib;") y>0. (48)
=1

In view of (c) in (47) the left hand side of (48) is equal to

n n n n
2rz% + 2z Z qu;l‘y +y7 (Z b,t,vb;l) y=2rz%+2 Zz:qf& + Z t,{f,
i=| =1 i=1

=1

where & = bTy. The resulting expression is nothing but the value of the quadratic
form with the matrix from the left-hand side of the LMI (a) in (47) at the vector
comprised of z and (§;),, and therefore is nonnegative, as claimed.
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with M free nodes. Note that in this case p=1, n =~ 0.5M? and m = 2M. Assuming
k <« M, here are the sizes of (41), (46) and (47) :

Design dimension

(41) n+1=05M2
(46) mk +k+1=2kM
(a7) nk+n+ 1~ 0.5kM2

# and sizes of LMI's
(41) kof (M + 1) x (2M +1)
(46) | n=~05M2% of (k+1) x (k+1)

(47) kof(n+1)x(n+1)
# of linear constraints

(41) n+1=05M2

(46) 1

(a7) kM + 1

We see that if the number k of loading scenarios is small {which normally is the

case), the design dimension of the dual problem (46) is by orders of magnitude less
than the design dimensions of both primal problems. As a kind of penalization, the
dual problem involves a lot (=2 0.5M?) of LMIs instead of just kK LMD’s in the primal
problems. But the LMD’s in the primal problems are large, and these in the dual small
in size. When solving these problems with the best-known numerical techniques so
far (the interior-point algorithms), the computational effort for (41) is O(M?), while
for (46) it is only O(k®*M3). For large M and small k this does make a significant
difference!
Of course, there is an immediate concern about the dual problem: the actual design
problems are not seen in it at all. How do we recover a (nearly) optimal construction
from a (nearly) optimal solution to the dual problem? In fact, however, there is
no reason to be concerned: the required recovering routines exist and are cheap
computationally.

4 Concluding remarks

In this paper we illustrated the use of conic optimization as a powerful tool for the
mathematical modelling of inherently nonlinear problems. As an example we used
the truss topology design problem. One may check the reference list below to observe
that with the exception of one paper all relevant papers appeared in the last 10
years. Indeed, the subject thanks its existence to the development of efficient solution
methods for conic optimization problems in the last decade. Especially the possibility
of modelling robustness of a design in a computationally tractable way opens the way
to many new applications. We demonstrated this only for the TTD problem, which is
a popular application in the literature. For other interesting applications we refer to
[8] and the other references. It may be expected that the ongoing research will bring
forth many new important applications in the near future.
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3.3.5 Summary of the semidefinite models for multi-load and ro-
bust TTD

In this section we summarize the results of the previous sections by presenting ex-
plicit forms of the primal (41), the simplified dual (46) and the simplified primal
problem (47) for the multi-load problem, and similar versions for the robust truss
design problems, respectively.

Multi ~ load TTD Robust TTD

Primal problem
min 7 Fmin T

s.t. s.t.
2r  fr 2rr, QT

J
((1) f_[ Z bltlblj x Ov ] =1: kv ((1) Q Z b‘ltlbll z Ov
i=1 =1

(%) dot<w, (b) Yt<uw,
() |

max ~2Tr (Q"'V) ~ wy
s.t.

a V7, CL
(a) (b;’VV N )t(),z—l.n,
(b) 2Tr () = 1.
a€RP, V e M xp

min 7 min r

s.1. s.t.

3.3.6 Evaluation

To understand how fruitful our effort was, it is enlightening to compare the sizes of
the original problem (41) and the reformulation (46) of its simplified dual problem.
Let us restrict ourselves to the simple case of a planar k-load truss design problem
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Appendix

Lemma A.1 (Shor [20]) Let A € R™*™,b € R™ and c € R. Then the quadratic
form 27 Az + 2b7 z + ¢ is nonnegative for all z € R™ if and only if

A A -
( B I; ) > 0 or, equivalently ( L cb ) = 0.

Proof: The proof consists of a sequence of logically equivalent statements, as
follows:

ve : zP Az + 26Tz +¢> 0

V(t#0,z) : t7 2T Az + 27 2 420
V(t#£0,z) : T Az + 26Tz + ct? >0
Y(t,z) : 2V Az + 2t + 2 > 0

V(t,x):(j) (bfj ﬁ)(f)zo o (; i)to.

t e
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