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Abstract

After a brief introduction to the field of Conic Optimization we present

some interesting applications to the (robust) trus topologr design (TTD)
problem, where the goal is to design a truss of a given weight best able

to withstand a set of given loads. We present a linear model for the

single.load case and semidefinite models for the multi-load and the ro'

bust TTD problem. All models are illustrated by examples. It is also

shown that by using duality tbe size of some of these models can be
reduced significantly.

Keywords: conic optimization, tmss topolory design, conic quadratic opti-

mization. semidefinite optimization, robust optimization.

1 Introduction

To makc optimal decisions is onc of the most basic desires of a humau be-
ing. Whenever the situatioo and the targets admit a tractable mathematical
formalization, this desire can. to some extent, be met by tools offered by the
optimization theory and algorithms. A very general mathematical setting of
an optimization problem is the following:

m i n  i / o ( r )  :  J i @ )  (  0 ,  i  :  I , . . . , m \ .  ( P )
r € X  " - '

In this problem, we are given an objective function /s(r) and finitely many
functional constraints fi@) S 0,f = 1,...,ff i . The fuuctions /,(r) are real-
valued functions of an n-dirrensional design vector r varying iu a given domain
X. The goal is to minimize the objective over the feasible set of the problem,
i.e., the set which is cut off the domain X by the system of inequalities fi@) <
0,i : 1, ,..,ff i . In general, this is a very hard problem to solve. Tbe situation
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is  much bet ter  i f  a l l  funct ions / r ( r ) , i  :0 ,  1, . . . , rn  are convex.  In  that  case
(P) is callcd a Convex Optimization problem. But even thcn, the problem
might be hard to solve.

In this paper we restrict ourselvcs to a special class of coDvex optimization
problcm, namcly Conic Optimization (CO) problcms. Conic optirnization ad-
drcsses the problem of minimizing a linear objcctivc function ovcr thc inter-
scction of an a{fine set and a convcx cone. The general form is as follows

(CP)

Thc objcctivc function is cTr, with objcctive vcctor c € Rn. Furthcrmorc,
Ar - b rcprcscnts an affinc function from Rt' to R- and K dcnotcs a con-
vex conc in R-. Usually ,4 is given as an rn x n (constraint) matrix, and
b e R-. Thc importancc of this class of problcurs is due to two facts: first
nrany nonlincar problcms can bc modclled as a conic optimization problcm,
and, sccondly, undcr some wcak conditions on the underlying conc K, conic
optimization problcms can bc solvcd cfficicntly.

Thc most ca^sy and most wcll known casc occurs whcn thc conc K is thc
nonnegativc orthant of Rt', i .c. whcn K : R?:

(Lo)

This is nothing clsc as onc of thc standard forrns of thc wcll known Lincar Op-
timization (LO) problcnr. Thus it bccorncs clcar that LO is a spccial casc of
CO. It is wcll known that LO nrodcls covcr numcrous applications. Whcncvcr
applicable, LO allows to obtain uscful quantitativc and qualitativc inforrna-
tion on thc problem at hand. Thc spccific analytic structure of an LO problcm
givcs risc to a numbcr of gcncral rcsults which providc in many cascs valuablc
insight and undcrstanding. At thc sanre timc, this analytic structurc undcr-
lics somc spccific conrputational tcchniqucs for LO; thcsc techniqucs, which
by now arc pcrfcctly well dcvclopcd, allow to solvc routincly quitc large (with
tcns/hundreds of thousands of variables and constraints) LO problems. Ncv-
crthclcss, thcrc arc many situations in rcality which cannot be covcrcd by LO
nrodcls. To handlc thcsc "esscntially nonlinear" cases, thcrc is a strong nccd
to extcnd thc basic thcoretical rcsults and computational tcchnioucs known
for LO beyond the bounds of LO.

Whcn passing from a generic LO problcm to its nonlinear extcnsions, we should
expcct to cncounter some nonlinear componcnts in the problcm. Historically,
this was done by putting thc nonlincarity in the functions defining the prob-
lcm, as donc above in problem (P). In conic optimization, however, we rcplacc
thc conc R! in (LO) by a nonlinear convcx conc K, and hence thc nonlin-
earity is now captured in thc cone. In the ncxt section wc discuss somc basic
propcrtics of rclevant convcx cones and we introduce two spccial cones that
play promincnt role in thc contcxt of conic optimization.

p' f t { . ' "  :  Ar_b€rc} .

It'ii {ct, : At: - l, € R?}
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In the recent years, a lot of attention has been devoted to conic optimization.
The rcason is that the interior-point mcthods that were developed in the two
last decades for LO (see, e.g., ll9, 22, 24, 23)), and which revolutionized the
field of LO, could be naturally cxtended to obtain polynomial-time mefhods
for CO (see, e.g. [18]). This opened the way to a wide spectrum of new appli-
cations which cannot be captured by LO, e.g. in control thcory, combinatorial
optimization, ctc. For a complete survey both of the theory of CO and its
applications, wc refer to the recent book [8].
The aim of thc paper is to introduce thc rcader to thc theory of CO, and to
illustratc its use. LO has a beautiful duality theory. Wc will see that much
of this thcory can be gcncralized to CO. Wc dcal with onc of the important
applications of conic optimization, namely truss topology design (TTD). A
truss is a mechanical construction comprising thin elastic bars linkcd to cach
other, such a^s an clectric mast, a railroad bridgc, or the Eiffel towcr. The
TTD problcnr dcals with how to design an optimal truss, with a givcn wcight,
best able to withstand a givcn load. The TTD problcm hers bccn studicd
cxtcnsiveiy, both mathematically and algorithrnically .1,2,5,13, 17, 25]. The
approach in this paper is mainly bascd on [8]; somc ncw cxarnplcs of truss
designs arc given in the course of thc papcr.

The papcr is organizcd as follows. Section 2 introduccs thc theory of CO
including the main duality rcsults for CO. Scction 3 is dcvoted to the TTD
problem. A nonlincar and a linear model of the singlc load TTD problenr arc
derived in Scction 3.1. ln *,his scction wc givc thrce examplcs of truss dcsigns.
A fourth cxamplc is uscd to dcrnonstrate the instability of thc dcsign with
respcct to additional loads, in Scction 3.1.7. Thc samc cxamplc is uscd in
subscqucnt scctions to show how more stablc dcsigns can bc obtaincd.

Bascd on a variational principlc, introduced in Section 3-2.1, wc derivc a modcl
for thc TTD problcm that enablcs us to dcal with the multi-load casc, i.e.,
thc ca^sc whcre we want to dcsign a truss that is able to withstand a finitc
sct of diffcrcnt loads in the best possiblc way. The model is a conic opti-
mization modcl, of the semidcfinitc typc. A simple cxamplc of a multi-load
design is prcscntcd, and it is shown that the ncw dcsign may be vcry scnsitive
to smali occa,$ional loads. Finally, to make the design less sensitive to such
pcrturbations in the load, in Section 3.2.4 we make use of a recently devclopcd
modcll ing tcchnique (sce, e.g., [3, 4, 6, 7, 9, 10, 11, 12, 14, 15, 211) that yiclds
a very robust design.

Conic optimization

Thc gcncral form of a conic optimization problem is as given by (CP). In this
section wc start with a discussion of thc conditions on thc cone ,C, and wc
review the threc most important cones. Then we deal with the main duality
results for CO. It will become clear that under some mild conditions the duality
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theory for CO closcly resembles the well known duality theory for LO

2.L More on convex cones

Rccall that a subset K of R- is a cone if

a e K ,  ) > 0  +  ) , a e K ,

and thc conc iC is a convex cone if moreovcr

a , a ' e K + a + a ' e K . (2)

Wc will impose three more conditions on K. Recall that CO is a gcneralization
of LO. To obtain duality results for CO similar to those for LO, the conc K
should inhcrit three morc propcrtics from thc cone undcrlying LO, namcly thc
nonncgativc orthant:

R ?  :  
{ t  

:  ( r r ,  . . . , r ^ ) r  :  x ; } 0 ,  i  :  1 ,  . . . , ^ } .

Tlris conc is called tlr" tln"o, cone. Thelinear cone is not just a convcx conc;
it is also pointcd, it is closed and it has a nonempty intcrior. These are cxactly
the three propertics wc need. We dcscribc thcse propcrties now. A convex
conc K is callcd pointed if it does not contain a linc. This property can be
statcd equivalently as

a e K , - a e K * o : 0 .  ( 3 )

A convcx cone K is callcd closed if it is closed undcr taking limits:

a i e  K  ( i : 1 , 2 , . . . ) ,  o : r [ t a i +  a € K .  ( 4 )

Finally, dcnoting thc intcrior of a conc f, as intK, we will requirc that

inrK * 0. (5 )

This mcans that there cxists a vcctor (in ,C) such that a ball of positivc radius
centcrcd at the vector is contained in K. In conic optimizalion we only dcal
with cones K that enjoy all of the above properties. So we always a^ssume that
K is o pointed and closed conuer cone with a nonempty interior. Apart from
the linear cone, two othcr rclcvant cxamples of such concs arc

1. The Lorentz cone

L^  :  { r €  R^  :  r *>  t l r ?+ . . .  +  r ' ^_ r ) .

( l )

z

F

t

This cone is also called the second-order cone. or the ice-cream cone



coNtc opTtMtzATtoN, wtTH AppLtcATtoNs To (ROBUST)
TRUSS TOPOLOGY DESIGN

2' The positive semidefinite cone sf . This cone ,,lives,, in the space s- oftn x m symmctric matrices (cquipped with the Fyobenius inner product
(4, B) : Tr(AB) : DoJ AtiB;) and consist of ar m x m matrices Awhich are positive semidefinite, i.e.,

s ? : { A € S m :  r r A r > 0 ,  V r e  R - } .

Wc assumc that thc cone K in (Cp) is a dircct product of the form

K :  K r  y  . . .  x  K ^ ,

wherc cach componcnt Kt is eithcr a linear, a Lorcntz or a scmidefinite cone.

2.2 Conic Duality

Beforc wc derive thc duarity thcory for conic optimization, wc need to dcfinethc dual cone of a convcx cone ,C:

r c .  :  
{ )  € R -  :  ) T a > 0 ,  V o e , C } .

Wc recall the following rcsult from [gl.

Theorem 2.L Let K C R- is a nonempty cone. Th,en

(i) The set K, 'is a closed conaer cone.

(ii) If K has a nonempty interior (i.e., intrc + u then K" is pointetr.

(iii) If rc is a closed. conuer pointed cone, then jnt K_ * 0 .

(iu) IJ K is a closed conuex cone, then so is K,, and, the cone dual to K, is
K itself.

corollary 2'2 If K c R- b a crosed pointed, conaer cone with nonenu)ta
mterior then so is K,, and uice uersa.

9n: 
*gt easily verify that the three concs introduced in scction 2.1 arc self-dual. The dual of a direct product of convex cones is the dircct product ofthcir duals. i.e..

K:K rx . . . xK^  = ) K* :  K l  x  . . .  x  K ! .

lt 1^*:t":ucnce' 
any dircct product of linear, Lorentz and semidcfinite cones

ls scll-clual.

Now we arc ready to deal with thc problcm duar to a conic probrem (cp). wcsta.rt with observing that whcnevcr r is a feasiblc solution for (Cfy 66"n ,no
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definition of K- implies )" (,4e - b) > 0, for all ) € K*, and hence c satisfies
the scalar inequality

Ar Ar > ̂ rb, v) e [..

It follows that whenever ) € K. satisfies the relation

A r \ : c

then one has

"T, 
: (AT x)r r : ),r Ar > ^"b : br ),

for all r fcasible for (CP). So, if .\ e ,C* satisfies (7), then the quantity bTl is
a lowcr bound for the optimal valuc of (CP). The best lower bound obtainablc
in this way is the optimal valuc of thc problcm

T.H {ot^ , Ar \: ,, ) € f,.} . (CD)

By definit ion, (CD) is the dual problem of (CP). Using Theorem2.I (iu),
onc casily verifies that the duality is symmctric: thc dual problcm is conic and
the problem dual to the dual problem is the primal problem.

Indccd, from thc construction of thc dual problcm it immcdiatcly follows that
we have the weak duality property: if s is fcasible for (CP) and ) is fcasiblc
for (CD), then

c T x - b r ^ > 0 .

Thc crucial question is, of course, if we havc cquality of the optimal valucs
whcncvcr (CP) and (CD) havc optimal valucs. Diffcrcnt from thc LO casc,
howcver, this is in gcneral not the case, unlcss some additional conditions arc
satisfied. The following thcorem clarifies thc situation. For its proof wc rcfcr
again to [8]. We call the problem (C P) solvablc if it has a (finite) optimal valuc,
and this value is attained. Before stating the thcorem it may be worth pointing

out that a finite optimal value is not necessar:ily attained. For cxample, thc
problem

(7 )

{-"" l" '(t;)
has optimal value 0, but one may easily verify that this value is not attained.
We need one morc definition: if therc exists an rl such that Ar - b e int K then
wc say that (CP) is strictly feasible. We have similar, and obvious, dcfinitions
for (C D) bcing solvablc and strictly fcasible, rcspcctively.

Theorem 2.3 Let the primal problem (C P) and its dual problem (C D) be as
giuen aboue. Then one has

(i) a. If (CP) is below bounded, and strictly feasible, then (CD) is soluable
and the rvspectiue optimal ualues are equol.
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b. If (C D) is aboue bounded and strictly feasible, then (C P) is soluable,
and the rcspectiae optimol ualues are equal.

(ii) Suppose that at least one of the two problerns (C P) and (C D) is bounded
and strictly feasible. Then a primal-dual feasible pair (r, A) is comprised
of optimal solutions to the respectiue problems

a. if and only if br A : cTs (zero duatity gap).

b. if and only if Xr[,lx - b] : 0 (complementary slackness).

Notc that this rcsult is slightly wcaker than the corresponding result for thc
LO case. In the LO case the same thcorem holds by putting cvcry'whcrc
"fcasiblc" instcad of "strictly feasiblc". The adjective "strictly" cannot bc
omittcd hcrc, howcvcr. For a morc cxtcnsivc discussion and sornc appropriatc
countcrexamplcs wc rcfcr to [8].

3 The truss topology design problem

A truss is a mcchanical construction comprising thin clastic bars linkcd to
each other, such a^s an electric mast, a railroa<l bridgc, or thc Eiffel towcr.
Thc points at which thc bars are linkcd to cach othcr arc callcd thc nodcs
of the truss. A truss can bc subjcctcd to an cxtcrnal load a collection of
simultancous forces acting at the nodcs, as shown by cxamplc in Figurc 1.
Somc nodcs of thc truss arc fixcd nodcs (likc thc nodcs A, B and ,,1' in thc
figurc), whcrcas thc rcmaining nodcs are callcd frcc nodes. In somc of thc frec
nodcs (nodcs C, C' and.E in thc figurc) an cxtcrnal load acts on thc truss.

349

Figure 1: A simple planar truss with a load
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Under the load. the truss deforms a bit, until the forces in the bars caused by the
deforrnation, compensate the external forces. When deformed, the truss stores certain
potential enerry; this energy is called the compliance of the truss with respect to the
load. The less the compliance, the more rigid the truss is with respect to the load in
questton.

Our goal is to design a truss of a given total weight best able to withstand a given
load. We call this the TTD problem.

This section is organized as follows. First we derive a linear model for the single load
case and give some examples. 6Flom the exarnples it becomes clear that the solution
obtained from the linear model can be very instable with respect to occasional small
additional loads. This makes it necessary to consider the case of multi-loads. This
case cannot be modelled in a linear way, but we can do it by using a semidefinite
model. To makes such a model robust against arbitrary perturbations (of limited
size) in the load we need another semidefinite model.

3.1 A nonlinear and a linear model of the singleload TTD
problem

3.1.1 Force and potential enerry in a single bar

To start with, let us look in more detail at what happens with a bar in the truss, due
to the displacements of the nodes in the truss when the external forces are working.
Consider a particular bar AB in the unloaded truss. Let AA and AB denote the
displacements of the nodes A and B. Defining

Figure 2: A bar before (solid) and after (da.shed) load is applied.

x : B - A ,  A x : L B - A A ,

and a.ssuming that A,4 and AB are small relative to llAAll : /, a first order approx-
imation of the elongation L,(. of the bar is given by

t
U

N
ti,

el<
d4,
el<

r7 'Ar
af : ---i;-;-

i l r t l

A B

(8 )
wh
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where,r is a characteristic of the material (known as young's modulu). Hence, if
Sag denotes the surface of a cross-section of the bar, then the magnitude of the force
caused by the elongation, is given by

l F l :oxSa6:  t t# :n tn "# ,

Let / denote the length of the bar, so l: lloll. The tension caused by the elongation
is given by Hooke's law:

L( x?'Lro:  n- { :6 f f i , (e)

( 1 0 )

where t4s denotes the volume of the bar^ Thus. the force caused by the bar at node
A is given by

( l l )

( 1 2 )

F:  lF l  *  :  , rnu{ ! f  , ,
i l r i l  l l r l l "

and the force at node B is -F.

It will be convenient to associate the vector

^ -
tr^B: vr{  

l l r i ,

to the bar.4B. Note that, given rc, the vector BaB contains information both on the
direction of the bar AB (the same a.. lrc) and the length of the bar, since

r a  ,  l x
t tpaEl l  :  

l l c l l

The tension in the bar can then be written as

t I 'A r

" = 
"ffi = r/xAt't 'Aaa,

and the force at, ,4 caused by bar /B is g.iven by

t t  L t
l '  :  K L l g  - . 1 - . . ;

, {  "  
:  t^s (Axt ' tJno)  Aaa

'I'

(  l 3 )

Now we can deal with the potential enerry stored in the bar as a result of its elonga-
tion. lFrom mechanics we know that this enerry is given byl

* l r l  *  Lt :  *Lxr F = i tn" (n",  po")t  . (14)
'Let 

{ be the elongation of the bar (0 S € < A/). The force necessary to maintain this
elongation is given by 7{ for some material constant .y. When increasing the elongation with
d{ the additional amount of enerry stored in the bar is r€d{. Hence, when reaching the
elongation A/, the total potential energy stored in the bar is given by

[" '  
- ,eae = \t€"lf '  = i . ,  @t)'z = +F^t,

J O

where F denotes the force corresponding to the elongation A/.
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3.1.2 Forces and potential energy in the whole truss

Let V (VS) denote the set of (free) nodes in the truss. For each node u e V, Au will
denote the displacement of u. Note that u € R2 if the truss is planar, and o € R3
if the truss is spatial.  Below we assume that u € Rd, with d e {2,3}. I f  u is a f ixed
node then Au : 0, so Au can be nonzero only if u is a frce node.

We denote by AV the concatenation of the vectors Au in the free nodes, and use
the notat ion LV(u): Au. Then Au € Rd and AV € Rdlvrl .  The externai load is
considered to be a vector in the sarne space: /  € Rdlvrl .  so /(u) denotes the external
force in the free node u.

It will be convenient to consider a bar as an ordered pair o[ nodes; thus we a.ssign a
direction to each bar (in an arbitrary way). Then any bar hars the forrn (u,tu), where
u,w € V. The vector 0,- e Ro is then given by

and. by (13), the force realized by bar (u,rr) at node u is given by

/ n \

l "-  ((Ar, - Lr) '  A,*) gu- :  tu- (L,ur B,- + Lu't '8",,)  B"-.

Let ,4 denote the set of all bars. For each bar o = (u,w) e 14 we define a vector
b,- e Rdlvrl according to

, ,  r  u t  - u
P p u  :  V K  , ,  " 2 ,l l  r ,  -  u l l

( 1 5 )

u e v \ .  ( 1 6 )b r , , , ( u )  :

0 , , , , '  i f u : u ,
- {Ju- :  0- , ,  i f  t t . :  u ,
0 otherwise.

Then the force realized by bar (u, u.r) at node u can be written as

t,,- (Lu'I' P,- + AuI' p-"1 go- : tu- (A,wr b,-1w1 + Lu'I'b,-(u1) B,-
: t"- (LVr b,-) g,_

: t,- (LV'I'b,-) b,-1r1.

Consequently, the total force at node o, caused by the clongatiorrs of thc bars con-
nected to u, will be given by

t
{  o , u }  € . 4

where {u, wl e A is a short-hand notat ion for either (u, u. ')  e A or (w,u) e ,4. The
above expression is a vector in Rd, a^s it should. By concatenation of all these vectors
we get the vector

/ \
I  t , , . (av ' r 'b ,_)b, . :  t  r  t , .b , .b :* l  LV.

{ r , , u } c , A  \ { , , u } c . 4  /

This vector repres€nts the forces acting from within the truss on its free nodes. [n
equilibrium, these forces have to compensate the external forces acting at the free

r,, , , ,(Av') 'b,,-)b,.,kf :  ( f  r, , , , t , , ,1r; i , j-) aq
\  t  , , -  l€ -4  /
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nodes. This implies that the following equation should be satisfied:
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(17 )
The matrix

A(t) :  t  to-bu-bT.
l r ,w )€A

is called the bar-stiffness matrix of the truss. This is an l"4l x l"4l matrix. Note that
the bar-stiffness matrix depends linearly on the volumes of the bars. We conclude that
in equilibrium the displacements vector AV will satisfy the following linear system of
equatrons.

A( t )Lv  :  I . (  l 8 )

Remark 3.L The lvll x lAl matrir B whose columns are the uectors bo- is called
the node-bar matrix ol the tntss. This matris ilepends on the trttss alone, i.e., on the
bars and their uolumes. Note that we haue the lollowing sirnple relation between the
node-bor motrix ond the bor-stiffness matrix:

A(t) -- B diag(t) Br (  le)

To cornplete our rnodel, we should also find an expression for the compliance, i.e. the
potential energr stored in the truss. According to (14) and (16) this potential eners/
is given by

Comply( r )  : j  t  t " * (LVrb , - )2
lu ,u leA

Using (17) and (18),  th is can be reduced as fo l lows:

(20)

Cornpll(t) = ILV'I '

( 2 1 )

Remark 3.2 Ilom o physical point oJ uiew it seems to be clear lDaf Compl ,(t) de-
pends on t and f only, and not on AV . From a mathematical point of uiew, iow"uer,
this is not euident, since the equilibriurn equation (18) moy haue more thon one so-
lution (or no solution ot all). A (18) has no solution, then this means that the tntss
t cannot can-y the lood f : it is crashed bg this load. In this case it makes sense to
def,ne Conpl /(t) : oo. Now suppose that (18) has two solutions: 11 and t2. So,
A ( t ) x 1  :  A ( t ) x 2 :  f  .  L e t  r :  r L  -  x 2 .  T h e n  A ( t ) x : 0 .  L e t t i n g  ? :  d i a g  ( t ) ,  w e
thus haue BT 81' x : 0. This implies xr BT B7' x : 0, whence llf + B7' xll : 0. Ilence
we houe b[-r : 0 uheneuer tr- ) 0. ln other words, iJ t,- ) 0 then b[-x1 : bT-xz.
Therelore,

\ a  
,  T .  ' 2  r  , 2

,/_/ f"- (ri b"-) : L t"- \xibu-)
{o ,u le  A  {u ,u }e ,4

Brcause ol (20) this proaes the claim.

/ \

t f tu-b,-bT,-l o, : t.
\ { u , u }e .a  /

/ \

I I h*b,*b::-l LV
\ { u , u } e , a  /

A( I )LV :  l7 ' I 'w .:  iw ' '
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by (26). One has

f r  AV 
(24) 

\ -  n '  hT AVJ  s r  
Z -  vuuvvusv

{ u,u }  €,4

= + I qi-b'!,-a'v':+ I lc,-l: $.
lu ,wl  e -4 {u,u}  €.4

Thus it remains to show that if t and AV are arbitrary feasible solutions to (22), then

t  . " 2

Y 6Y 2 U!-ttt ,
u

where q'is any optimal solution of Qa). To show this we introduce variables q,- as
follows:

Q,w t :  tu_  (w r  u "_) ,  V  ( r ,  w)  e  A .

The vector Q : (Q,-)p,*1E1 is feasible for (24), because

t  Qu-bu-: f  h- (av7'b"-)b,-
{ u ,u }eA  l u ,u }e  A

/ _  \
:  I  )- t ,-b,,,b::* l  av : A(t)Lv = I.

\,",fi'" 
- - "-)

Since g. is optimal for (24), we conclude from this that

l lq l l ,  >  l lq ' l l ' .  (28)

The last step in this analysis consists of showing that (28) implies (27). From (20),
(21) and the definit ion of qu- we deduce that

I ' , 'w:  t  t , , ,u(Lv' t 'bo-) ' :  I  P
l u ,u le .A  t . - )o  " ' ' -

Using the Cauchy-Schwarz inequality we obtain

o
b,
pr
lir
AI

(27)
He
tw

I r i
i s l

3. r

I n t
(24"

(,; i  tn,*t), i-)"

IS AI

t iv i t

Inde
A( t )lst l i  :  ( , : , tc.- t)  :  ( , : ,

= ( r f i.\ (t ,..)
\,,30 '"- / \r,30 /

\- 
q;-

/ r t
t . , " )O "uu

Since i..r ) 0, we obtain, also

{ u

The last inequality follows since J is feasible for (22).
using (28),

t  t r . r t 2  l ^ * l l 2

5- 
q i -  

,  l l9 l l  r  ,  l l {  l l  r

' L , , - o t ' -  
-  

a  L D

proving (27). Thus we have shown that optirnal solutions of the linear problem (23)
and its dual (24) contain all the information we need to obtain an optimal solution
of the nonlinear problem (22).

Thus
value



obviously, the dual problem is feasible if and only if the vector / of external forces
belongs to the span of the vectors b,-. we will make this natural a.ssumption. The
primal problem is feasible as well (take ay: 0). Hence, by the duality theorem for
linear optimization, both problems have optimal solutions and their optimal values
are equal. If AV is primal feasible and g dual fea.sible, then we .,', *.it"
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(  26)

{ u ,u }e *4 {o ,u }  e .4

: t !qi,-lb,- (u:!-a,v')
q " - l o

b,-qi,- (!) f.

s  I  l q , . l  : l l q l l , .
{ a , u } e A

Hence, AV and q are optimal, for (28) and (24) respectivery, if and only if the above
two inequalities hold with equality, and this holds if and only if

qu-LV I ' b , - :  l g , -1 ,  V ( r ,  w )  e  A / t <  \

It is worth pointing out an interesting consequence of this result, namely that if AV
is primal feasible and q dual feasible then these solutions are optimal if and only if:

lor euery bar lu,u\ with q,- l0 one has lLVTb"_l :  l ;  ln other word.s,
all such bars haue the sarne tension, narnely 1!

3.1.5 Correctness of the l inear model

In this srection we show that if AV- and g* satisfy (25) (i.e., are optimal for (23) and
(24) respectively) then

t : ,  , ,1q , ' , !  ,  ou  -  l lq ' l l ,  on .
l l r l ' l l r  u

is an optimal solution to our original quadratic model (22). obviously, the nonnega_
tivity constraint I > 0 and the volume constraint in (22) are satisfied:

\ -  r  _  . I q , , , - ; . r l cJ . l
. /  o u u - w  - - - - - - - - : k J .

pf i t^,  i ls ' l l r

Indeed, the volume constraint is tightl Furthermore, using (17) (i.e., the definition of
A(,)),  (25) and (26) we may wrire

A( t )  LV

(39)

(25)

/ \

I  f  t , -b"*b' t :- l  LV
\ { u , u } € , 4  /

t lqi-lb,- (bT-Lv')
{ u ,u }eA

l n r  I

I  lc , l . lb ,*y:  t
q " " , l o  1 v u  , h - f O

Thus we have shown that (26) is feasible for (22). It remains to show that the objective
value /TAV is minimal. we start with computing this value for the solution siven
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becomes:

dr:  br l  brs bro brg bzt 6ze b:o 61 brs bso bls bcs

- 2 0  0  - 4  - 5

o  . . 1 0  E  - 5

2 0 - 2 O 4 O _ 4

o  0  - 8  - 1 0  _ 8

2 0 5 4 0

0  - 5  _ 8  _ l o

o  - 4  - 5  _ 2 0

l 0  a  5  0

u  - {  2 0  2 0

l 0  8  0  u

5 . t 0 2 0

5  8  t 0  0

The non-indicated entries are all zero. By removing the rows corresponding to the
fixed nodes (i.e., node I and node 3), we get the rnalrix B as giren below,

b t :  6 r l  b r r  t r €  b z l  b z t  b z s  b z a  6 t l  b r t  b 3 6  6 l S  6 s o

where we have also depicted the vector / as given below,

0

- l o

0

0

0

o

o

0

with B and / as just given, and with w: l ,  the solut ion of the problem (24) is as
follows:

s :  (  o ,o ,  -1 ,  o ,o ,  o ,  r ,o ,o ,  - l ,o ,o ,o) '
\ 6 6 )

and the solution of (23) is given by

l lz = (0, -0.225,0.027, -0.091,0, -0.12b, -0.027,-0.092)r .

using (26) we construct the optimal solution of the nonlinear model, which gives
( w i t h u . r : l ) :  

/  S  8  5  \r  :  (0 ,0 ,  , r - ,0 ,0 ,0 ,  ; ,0 ,0 , r t ,0 ,0 ,0 , /

I lc

B1
nc
ler

Wt
no,
fix,
o f ,
in

Asr
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3.1.6 Three examples

Vertical load on two parallel walls Let us start by considering the following
simple example where one has two parallel walls, with the sarne height and at distance
1 meter from each other. One wants lo make make a vertical (flat, i.e., 2-dimensional)
construction on the wall that should carry a load of 10 Newton. See Figure 3. For
that purpose a fixed amount of I unit of material is available. To obtain the stiffest

Figurc 3: Two walls that necd to carry thc load a-s

possible construction, lel  us use a equidistant grid of size 3 x
w h o s e  v e r t i c e s  a r e  t h e n  g i v e n  b y  ( i , , 1 ) ,  i : 0 , 1 , 2  a n d  j : 6 , 1

4 5 6

indicatcd .

2 of heighl 1 rneler ' ,
. See !'igure 4. The

Figurc 4: A 3 x 2 grid with cxtcrnal forcc in nodc 2.

nodes are nurnbered as indicated.

By way of exarnple, let us compute vector 812, assurning x :  100. This bar's end
nodes are I and 2, whose coordinates are (0,0) and (],0) respectively. Since the
Iength of this bar is l /2, using (15) we f ind

7rt : JLoo ̂

We can forrn the vector b12, zrs defined by (16). For thc rnoment we assurne that al l
nodes are freel Then b12 is the first vector in the scherne below. Note that node I is
fixed, hence, arcording to the definition in (16), the corresponding (first two) entries
of b12 should be removed. We will deal with this later, sirnply by removing all entries
in the rows corresponding to fixed nodes.

Assuming that all nodes are free, the matrix consisting of all column vectors b,,

rir (i): (?)
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Using (26) we construct
(with u,' = l):

C. Roos & D. Choeroni

Figure 6: A 3 x 3 grid with external forcc in node 6.

the optimal solution of the nonlinear model, which gives

(0,  o,  o,  j ,  o,  0,0, .  . . ,  o,o,  r1,  o,  o,  o,  o) '

ano  

Lv : - (0 .1242 ,0 .2772 ,0 .209 r ,0 .b3b1 ,0 ,0 .1946 ,

0, 0. 6250, -0.1246, 0.27 7 5, - 0.2093, 0.5352 ) 
-r.

lFrom this we call compute the compliance:

Cornpl l ( r )  :  i17 '  AV :  ;  x  ( -10)  x  ( -0.62s0)  :  3 .12b0.

The corresponding truss is shown left in Figure 7. Arnong trusses ba-sed on an p x q

Figure 7: Tbusses based on (a) 3 x 3 and (b) 21 x 17 grid.

grid, with 2 < p < 2l and 3 { q s 2l (q odd), the 2l x 17 grid gives the lowest
compliance, namely 2.9594. The corresponding truss is shown at the right in Figure
5. The next best grid is 19 x 19, with compliance 2.gb9g.

an,
q r i

tht
cot

Ve
si t r
2-d
the
AIX

eqr

4 a
(24

and
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Av :  (0,  -0.5062,0.0597.  -0.2049,0,  -0.2812,  -0.0615,  -0.2068)r  .

lFrom this we can compute the compliance:

ComplT( t )  = , f r  AV:  ]  x  ( -10)  x  ( -0.5062) :2.5312.

The corresponding truss is shown left in Figure 5. It may be clear that lower compli-

0  0 2  0 . a  0 . 6  o t  I  o  ! . 2  o .  0 . 6  0 a  I

Figurc 5: TYusscs bascd on (a) 3 x 2 and (b) 17 x 21 grid

ances may be expected when using a finer grid. For example, when using a 17 x 2l
grid the compliance is 0.8359; the corresponding truss is shown at the right in Figure
5. Arnong trusses based on an p x qgrid, with 3 S p < 2l (p odd) and 2 ( q < 21,
the 17 x 2l grid gives the lowest compliance. The next best grid is 17 x 20, with
compliance 0.8376.

Vertical load at one vertical wall In our second example we consider the
situation where a vertical load has to be carried by one vertical wall, by using a (flat
2-dimensional) truss that is fixed to one side of the wall. As before, we assurne that
the height and the width of the truss are I rneter, that the acting force is 10 Newtorr
and that an arnount of I unit of material is available. Sc'e Figure 6, which shows an
equidistant 3 x 3 grid for this problem; the vert ices are given tV ( i ,  *),  i  :0,1,2 and
j = 0, l,2. The nodes are numbered as indicated. The fixed nodes are numbered l,
4 and 7, and the force is acting in node 6, as indicated. The solution of the problem
(24) is as follows:

and the solution of (23) is given by

Ay :  - (  0 .0497,0. l l l t ,  0 .0836,  0.2140,0,  0.0778,

0,  0.2500,  -0.0498,  0.1110,  -0.0837,  0.2141)"

n : (u, o, o, -;, o, o, o, '  . . , o, o, |, u, u, o, u) 
' '
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given by

bn bre bra bzs bza b3a

1 0 0 0 5 0 0
F I _
" -  2

1

0 0 -5  -10  0

I

0

0.0010
0

0.0005

0.9995

AV' :

Using (26) we derive from this the optimal solut ion of (22)'  with u'r:  I  and l lq' l l  '  :

2.001, whictr gives

0 0 5 0 0

0 0 5 0 1 0

Note that if the two vertical components in /1 were zero, then an opbinral truss would

o l t l y u s e t h e t w o l r o r i z o n t a l b u . s , b o t h w i t h h a l f o f t h e t o t a l v o l u m e u ' B u t s u c h a
truss would not be able to carry the vertical components of the forces in the right

nodes, and it would crash. Mathematically this rneans thal then the problem (24) is

infea:;ible, and problem (23) unbounded. In the present ca.se the optirnal solution of

these problems are respectively given by

1 0

I  ro I;  h: 
l  -ooor l
l,l
I o.oto I

t
c t
ol
a
ol
t t
ul

al

re
rt
R
is

[;)

<-rd
InI

0

1
' -  

2 . 0 0 1
0.0010

0

0.0005

0.9995

,  LV :  2.001Id) 3 .

B1
wl
tw
an
inand Compll' @ _ trJ{'^v 

: 2'0020005. Figure l0 slrows the optimal trrrss irr the

unloaded and loaded ca^se, respectively'

The optimal truss is designed for the given load' One may wonder how it behaves

*hen it is loaded with arioccasional load that differs not too much from the design

load. We will demonstrate below that very small perturbations in the load rnay have

a disastrous effect on the compliance. To make this clear, let g be an eigenvector of

,4(t) with eigenvalue'\ '  So we have A(t)g :)9'  Let /  denote the design load of the

truss and AV the corresponding displacement. without loss of generality we a'ssume

;il iltll : 11111 u"a ft'g > 0.- Now consider the situation that the design load is

replaced by
f h ) = J + t g

for sorne ,y 2 0. Then the displacement Alz(7) under the load follows by solving the

equation A(t)Ay(r) : J + ''tg, which gives

AY(r )  =  w + ! t .

th
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Uniformly loaded bridge In our third exarnple we want to design a bridge that

crosses a river. The bridge rests on the shores of the river a"nd it has to carry a load

of l0 N, which is assumed to be uniformly distributed over the whole bridge- We use

6px q grid, with the lower left and lower right node fixed, and with external forces

of size l0/(q - 2) in the remaining lower nodes of the grid. As before, we assume

that the height and the width of the truss are I meter. and that an atnount of I

unit of material is available. Since the solution t of problem is proportional to the

amount of material the sizes of the bars in the truss can be easily a.dapled to more

realistic values. A similar argument applies to the chosen size of the forces acting on

the bridge and to the size of the grid.

For a 6 x 21 grid the corresponding solution is shown left in Figure 8. Its compliance

is 0.5000. Among trusses ba^sed on an p x g grid, with 3 < p S 21 and J < q < 2l (q

Figurc 8: tusscs bascd on (a) 6 x 21 and (b) 21 x 21 grid.

odd), the 21 x27 grid gives the lowest compliance, namely 0.3601. The corresponding

truss is shown at the right in Figure 8.

3.1.7 Instabi l i ty with respect to addit ional loads

By way of example we consider a very simple truss, based ot a2 x 2 square grid, for

which the left nodes are fixed, and with external forces in the two right nodes. The

two external forces have a horizontal component 10, and vertical cornporrents 0.005

and -0.005 in the upper and lower right node respeclively. The situation is depicted

in Figure 9. The nodes are numbered as indicated. The rnatrix B (for rc = 100) and

/ ( 1 )

f ( 2 \

Figurc 9: A 2 x 2 grid with external forces in nodes 2 and 4.

the vector f : fr, with the entries corresponding to the fixed nodes removed, are
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Figurc 11: Instabi l i ty of thc truss w.r.t  small  occasional load.

which amounts to only 0.25% of the design load size l l /1 l l ;  the new compliance value
is 2.12047, which means an increa.se of 6%.

It is clear from the above example that srnall eigenvalues of the matrix zl(i) rna.y
give rise to instability of the truss: a small perturbatiorr of the load rnay causc a
large increase of the cornpliance. Thus we rnay conclude thal for a stable truss Lhc
eigenvalues of the rnatrix ,4(t) should be bounded well away from zero.

Recall frorn (19) that the bar-stiffness rnatrix A(t) was given bv

,4(d) : Bdiag (t) B' ' : 
t t,-bu-b::.,

l u , u l eA

where B denotes the node.bar matrix of the truss and t the bar-volume vector of the
truss. The equation (18) wil l  have a unique solut ion only i f  A(t) > 0. This together
with the above observations more than justifies the followirrg a,ssurnption, which we
assume to be satisfied in the sequel.

A s s u m p t i o n  3 . 3  I l t , )  0 l o r i : 1 , . . . , n ,  t h e n , 4 ( r )  >  0 .

Note that this is also a physically meaningful assumption. It excludes rigid body
motions of the ground structure: if all rigidities are positivc then thc potential energy
stored by the structure under any nontrivial displacement is strictly positive.

3.2 Multi-load and robust versions of the TTD problem

In the previous sections we managed to dcrive a linear model for the TTD problern

which turned out to be equivalent to the earlier proposed nonconvex quadratic rnodel.
A enlightening explanation of this very pleasant phenomenon is given in [8]. The
explanation is based on a conic quadratic model of the TTD problem; this nrodel

T

H
tl
I I

- \-  r  t ' . t ' l '
L - ' r " t " t
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i lJ
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Figurc 10: Thc optimal truss, unloaded (grcy) and loadcd (black).

The new compliance is then given by

cornplyl. , l( t) :  trrt  
+ t i l ' '  ( lv * ]n) > co' 'ul/(,) + {Vl '

Here we used that f ' t 'g > 0 (and hence also.g?AV > 0) and g1'g = l l f l l2. We see
that the effect on the the compliance of such a perturbation of the load rnay be large
if the eigenvalue is srnall. In our case, the bar-stiffness rnatrix A(t) is giverr by

A ( t ) : B d i a g ( l ) 8 7

Its smallest eigenvalue is 0.00548, and a corresponding eigenvector 9 such that llgll =

ll/ l l  and Jr g 2 0 is given by

s :  l l f  l l (0 .00000,  0.7881e,  -0.000154,  0.61544)? '  .

Frorn this we derive that

Comply1. , ; ( t )  > Cornply( f )  + 1825912.

For 7 : 0.025 (which amounts to a perturbation of 2.3V0) tbe cornpliance becomes
more than 13. For I : 0.0025 the pert,urbed load becornes

?A?

f roo o o ol
=  r  I  

u  0 .0s  0  -0 .0s  
l .  ( 2e )-2 . r ) u r I  

o  o  eu .e75  0 .025 |

L 0 -0.05 0.025 0.075 l

I ro.oooooo I
2 | 0.022867 |

f z :
4  |  

e s e e e e 5 |

L 0.03r75e J

(30)

Figure 1l shows the loaded truss under /2. The perturbation of the load is f llsll,
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Lemma 3.4 Complr(t) < r holds iJ and only

+ LvT' A(t)Lv - fr Lv

Proof: By (32), Comply(l)  (  r  is equivalent to

.!uq lf'w - |w7'a1t1LV) < r.
A Y € R -

Clearly, this holds if and only if the quadratic form

|w7'tp1nv - yT Lv + r

is nonnegative for all AY € R".

Theorem 1.5 Compll(t) 1r holds i l  and only i f

/ , > .  r ' t ' \
I - ' J  l : - n
I  r  , t o t  I  - " '
\ r  " \ " t /

follows frorn Lemma 3.4 and Lernrna A.l. tl

d

* r>0 ,  VAY .
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b
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tr
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pr

T
in
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Proof: Thisimmediately

3.2.2 Semidefinite model for the multi-load TTD

The semidefirrite representation of the compliarrce, a.s given by Theorem 3.5, enabies
us to formulate the TTD problem as a socalled sernidefinite optimization oroblem:

*, 
{ ' 

, ( ' ; y; 'o),,,r:) -, f ,, .,, ,-,} (33)

In the multi-load case we assurne that that thc set f of loading scenarios is a finite
set,

f :  { f r , . . . , f r ) .

A big advantage of the above model is that it can be easily adapted to obtain a TTD
that can withstand the loads f i in f (not acting at the same time) in the best possible
way.

f  (zr  - - i j  \  .  "  l
+ i , "1 '  '  |  - r , i , ,nr ,uT l -u ' ' : r "" 'k ' t t t lw' ' />01'  

(34)
t  \  

' ( = i " " " ' " n  
)  n = '  I

)

The design variables are t;  € R+, i :  L,. . . , f t ,  and r € R. Indeed, the l inear matrix
inequalities (LMI's) in (34) express the fact that the worst, over the loads fr, ..., fx,
compliance of the construction yielded by the r igidit ies 1r,. . . ,  f ,  does not exceed
r, while the linear constraints express the fact that t : (tr, ..., t,) is an admissible
design.

A crucial question is, of course, if we can solve these models efficiently! The answer
is affirmative, as has become clear in Section 3.2.3 .
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( 3 1 )

can be easily extended to the multi-load case. But only in the single-load case it
naturaily shrinks down to a linear model. This suggests that whenever a truss has to
be designed that can withstand a finite set of (more than one) loads a linear model
will not suffice.

In this section we consider the multi-load case, i.e. the case where we want to design a
truss that is able to withstand a finite set of different loads in the best possible way. We
show that an optimal truss can be obtained by solving a semidefinite minimization
problem. Robust designs are obtained by allowing the set of loads to be infinitely
large' but where the set is of a special form. Berow we deal with ellipsoidal sets of
Ioads. It will turn out that this case can also be rnodelled by a simple mininrization
problem, with only one sernidefinite constraint.
The models in this section are based on a simple variational principle that will be
introduced in the next section.

3.2.1 Variational Principle

Given a truss f and an external load / we dcfine the potential energy Els(LV) of
the loaded system as a function of the displacement AZ as follows:

Et.r(Lv) : I r,vr.t1t1LV _ Jr LV
:  Iw ' I 'Aaiag( t )B ' I 'LV -  f r tV.

since I > 0, the rnatr ix A(r) is posit ive semidefinite, and hence Ets(LV) is a corrvex
function. As a consequence, this function is bounded below if una'ority if its gratlie't
vanishes for some AV, i.e., if and oniy of there exists AV such that

A ( t )  L V  :  I .

Note that this is exactly equation (18), the equation for equi l ibr ium. Thus we obtain
the following Variational Principle:

The equilibrium displacement of a truss l under an external load f is a
minirnizer of the quadratic form

I a,vI-d1t1av - frav

in the displacement AV; if this quadratic form is unbounded below, there
is no equilibrium at all.

This is a typical variational principle in mechanics and physics. such principles state
that equilibria in certain physical systems occur at critical points (in good cixes at
minimizing points) of certain energ"y functionals. Variational princip)es ire extremely
powerful; in mechanical, electrical and other applications an issue of primary rmpor_
tance is to identify a tractable variational principle governing the model.
Note .that in equilibrium, the (minimal) value of the enerry function is given by-i  I 'av. Thus, using (21), we obtain

-Compl, ,( t )  = 
Tf ( ;  LV7'A(t)Lv _ fr 'LV).  (32)

As a consequence we have the foilowing lemma, which needs no further oroof.
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For 7:0.01 the perturbed load becomes

\

t tJ J  
_

2

1
(36)

Figure 13 shows the loaded truss under /3; The increase in the load size is l llgll,

Figure 13: Instability of thc multi-load truss w.r.t snall occasional load.

which amounts to only l% of the design load size ll/ll; the new compliance value is
2.25312, which means an increase of about 12.5%.

3.2.4 The robust TTD problem

We finally consider the socalled robust TTD problem, where we assume that the set
of loads f is an ellipsoid:

, :  { t : e u  :  u I ' u < r \ ,  e e M - ' P . (37)

The matrix Q has to be chosen such that the ellipsoid f contains all possible loads
that the truss has to withstand. Since the set f is infinite. we meet a difficulty not
present in the case of finite f, namely that the objective now is to minimize

Compla(t) : sup Comply(t), (38)
T E F

which is the supremum of infinitely many SDR function. Fortunately, it is nevertheless
easy to get an SDR for Compll(t).
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We turn back to the problem considered in Section 3. I .7. In that section we considered
thesingle load truss for the design load /1, and we also subjected the resulting truss
to the load /2, as given by (30) Thus these forces are given by

,
J t  -

^

I ro oooooo I t ro.oooooo I
l -o .o t rsooo l  z  lo .ozzaoz l
l : l '  f ' z :  ( 3 5 )
I 10.0000001 a I e.eeeeesl

I o.or ouoo j L o.o3 r 75e J
Using the same grid as there, we can now optimize the truss with respect to both
loads by solving (34) for /c = 2 and /1 and /2 as just given. The optirnal multi-load
truss I with respect to these loads, when loaded with one of these loads, behaves zrs
depicted in Figure 12. The compliance of the truss with respect to /1 is 2.012455,

Figurc 12: Multi-load truss subjcctcd to thc two scparate dcsign loads /1 (lcft)

and /2 (right).

and with respect to J2 is the compliance 2.015527 (which is also the optimal value of
problem (34). Comparing lhe right figure in Figure 12 with the behavior of the single
truss load under /2, as depicted in Figure 11, we see that the new truss withstands
this load considerably better.

Note that this result does not imply that the new truss is stable with respect to other
small perturbations of t.he load. In fact, this is not the case. To obtain a perturbation
for which the truss is most sensitive we use lhe same approach as in Section 3.1.7.

For the new truss the smallest eigenvalue of A(t) is ) : 0.049163 and the correspond-
ing (normalized) eigenvector g such that llgll : ll/r ll and ff g > 0 is given by

g = l l /r l l  (0.00000, -0.86938, 0.00135, -0.49413)'r .

Using the notalion of Sect,ion 3.1.7, we replace the design load by

I 6 )= f t *1s ,
with 7 > 0. Then the compliance with respect to f (l) satisfies

Compl;1-,y(t)  )  Compl; ,  U) + 
^l l . f r l l '  

-Comply, ( t )  +z0J4f .
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1 LO ( l L ) sDo (2L) sDo (3L) SDO (Rob.)

2
J

i

o

6
'7

t t z

r l 3

t r a

. 2 3

124

0.4998

0

0.0005
0

0.0002

0.4995

0.4981
0

0.0054
U

0.001l

0.4954

0.4876

0

0.0007
0.0156
0.0024

0.4937

0.4576

0

0.0377
0.0377
0.0093

0.4576
8 Design Cornpl. 2.0020 2.0155 2.0519 2.1 63 1

I Compl. w.r. t  /1 2.0020 2.0125 2.0378 2.1548
l 0 Compl. w.r. t  f2 2.1205 2.0155 2 .0155 2 .1560
l l Cornpl. w.r. t  /3 3.7790 2.2531 2 .0519 2.1 609
t 2 );1,, (A(r)) 182.5928 20.3405 17.2258 1.0820

Figurc 14: Optimal trusses and thcfu compliances.

both loads. The obtained truss turned out to be instable with respect to the load /3,
as defined bV (36). The just mentioned results of these sections are summarized in
the second and third column of the table in Figure 14.

The rows 2-7 give the volumes of the bars, row 8 the value of the cornpliance for
the design, and rows 9-ll the actual compliance with respect to the loads /1, /2
and /3 respectively. The last row gives the inverse of the srnallest eigenvalue of the
bar-stiffness matrix A(t); we already have seen that this quantity can be considered
3^s a rne&sure f<rr the robustness of the trus.

The fourth column in the table gives the corresponding values for the rnulti-load
model (34) where the loads are now /1, f2 and. /3. It is depicted left in Figure l5
under the three given loads.

Figurc 15: Multi-load truss loaded with fi (left), with /2 (middlc) and /3
(right).
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Finally, in the fifth column one finds the solution of the robust sernidefinite model
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Theorem 3.6 Let f be as giuen bg (37). Then one has one hos Comply(t) 1r for
eoch I e f it ond, only if

/ \
I zrt, Q't' I
I  r  

l t u .
\ 

o lo.t,i!' 
)

Proof: With Compls(t) as defined by (38)' we may write

Complr(t) < r + LrxrA(t)a - (Qu)rx * r > 0, VrV(u : uru 1

++ \rxr l1t)r - (Q")rx t r > 0, Vc V(u I llr'?.l =

e lr7' A(t)x - (Qffi)?'c * r ) o, vxYu l o

e |1; |u1c)? a(r ) ( l l " l lo)  -  (Q")1 ' ( l lu l lx)  + ruru

l )

r )

>0,

Replacing llzll c by -9t we obtain

Compl l ( t )  1r  e 2ruru+2urQ' t 'u  + 9? ' ,4( t19 > 0,  YyYu

*  f " )  
t  

(z r lv9.1. )  ( " )  .  0 ,  vvvu
\v /  \  0  eu) ) \a) -

/ zrt., o't' \* 
[  o '  io)t '

For the la^st equivalence we used again Lemma A.l. This proves the theorem.

Theorem 3.6 enables us to model the robust TTD problem as follows:

( f z,r, e't' \ " 
'l

T f { , , I  - : -  . . .  I '0 ,  I r 'su, r>of  .  (3e)
(  \  

a  Lo , t ,o i  ) -  i= ,  )

This model finds the truss which is best able to withstand oll the loads in the ellip

soidal set of loads

f  : { t  - e u  , , u r u 3 r \ ,  Q e M - ' P .

Note that it does not tell us how to choose the matrix Q. But il is clear that we

should choose Q in such a way that the ellipsoid f contains all loads that may occur'

3.2.5 Examples of robust designs

In this finai section we consider again the 2x2 grid of Figure 9 in section 3.1.7,

which was also used in Section 3.2.3. In Section 3.1.7 we found the truss optimal with

respect to /1 by solving the linear model (24); it turned out that this trtrss is very

unstable with respecr to the load /z (cf. (35)). Subsequently, in Section 3.2.3, we

used the multi-load semidefinite model (34) to find the optimal truss with respect to
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Figurc 1Z: The robust truss w.r.t a small occasional loa.d.

t]ly"ly." Then (34) is a semidefinite problem with design dimension n I t, n :
o(M') being the nurnber of tentat ive bars. The problern .ontuiu. & (a is the number
of loading scenarios) big LMI's (earh of the row size rn * l, where m is the number
of degrees of freedom of the nodal set; m x 2lv{ f.or planar a.d m x JM for spatial
trusses) and n * I linear inequality constraints.
For a planar 15 x l5 grid with the left nodes fixed, we get M = 225,n* I : 250g6, m :
420. Even an LP problem with 25.000 variables should not be treated as a snrall one; a
semidefinite problem of strch a huge dimen.sion is definitely not acccssible for existing
software.

The situation, however, is not hopeless, and the way to overcome the difficulty is
offered by duality. The d.al problerns of (3a) and (39) can be greatly sirnplified
by analytical elimination of rnost of their variables. For exarnple, the dual to the
outlined multi-load truss problem can be converted to a semidefinite problern with
nearly mk design variables; for the 15 x 15 ground structure and three scenarios, its
design dimension is about 1300, which is wi lhin fhe range of appl icabi l i ty of exist ing
solvers.

Below we will show how this can be reached for the rnultlload problern; sirnilar
arguments can be applied to the robust problenr. The outcome of tfue process will t-,e
summarized, for both cases, in section 3.3.5. Note that (34) can be ,"rtut"d o,

y' i rn:)  . '  i  = t ,  , -  
i  

t ;1w, = r)  (41)

I

I
I
I

,?rr'{' (';,
The only change is that we replaced Ii by -Ii in the LMIs; this makes no difference
and is rnore convenient for our purpose.

3.3.1 Building the dual F
w

We introduce dual matri.x variables

(?, 'i,),u 3

A
c
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Figurc 16: Robust truss loadcd with /1 (left), with /2 (middle) and /3 (right).

(39) for the matrix

This means that the obtained
loads

[  / ,0,, \  I
" - )  t=eu=l ' ! : ,  l :  u€Rr , i , r ,s  r  | ."  _ ) ,  

l ro r ,  |  
. *

[  \ , ; ; /  )
It is depicted left in Figure l6 under the three given loads. aFrorn the table it is clear
that the inverse of the smallest eigenvalue of the bar-stiffness matrix is by far the
srnallest when compared with the other trusses. This means that the tmss should
be much more stable than [he other trusses when loaded with any small occasional
load. To verify this we conclude this section by loading this truss with a load of the
form /1 * 79, where g is a unit eigenvector of the bar-stiffness matrix for its srnallest
eigenvalue. The smallest eigenvalue of A(t) is ,\ : 0.924217 and the corresponding
eigenvector s such that llsll : ll/'ll and /flg > 0 is given by

g : l l f i  l l  (0.01457, 0.70696, -0.01457, 0.706e5)7 .

For 7:0.02 the perturbed load becomes

371

1 0
0

l0
U

0: I
\

truss is

0  0 \
2 0 l
0 0 l
0  2 /

inral with respect to the cllipsoidal set of

I ro.ooarzz I
z I o. le4eb8 |

l t :
4 | e'ee5878 I

I o.zooosa.l

( '10)

Figure 17 shows the loaded truss under /a; The increase in the load size is Tllgll,
which amounts to 27a of II/r l l ; the new compliance value is 2.19915.

3.3 Simplifying the semidefinite models by using duality

A disadvantage of the semidefinite models (3a) and (39) is their huge dimension.
Consider, for example, in the multi-load case (34) a truss with an /l{-node ground
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Hence, the inequalities (o) and (d) imply the inequality

f  u ! r io ; ' ,Tb ,  <  t ,  i :  t ,  . . . ,  n .
a

On the other hand, if the last inequality holds, taking 0i: uiai'ii', also (a) and (d)
follow. Thus we conclude that the following problem has the same optimal value a.s
(43).

supremum -2Dj:,Ilu, - w1
such that
(b) 't >- o,

F

/n\ 9 \-
\ L /  "  2_a i  I ,

j : r
t

(d ' )  la i {u ,a ;L { t ;  S  1 ,  i  =  r ,  . . . ,  n ,
J - L

(e ) ai

Due to (e), and by the Schur complement lemma, the system of inequalities (d') is
equivalenl to the following system of LMIs:

Consequently, we may replace the constraints (d') in problem (aa) bV (45). Note
that (45) implies ai 2 0, for all i. Hence, since our problem is still strictly feasible,
omitting constraint (e) in (aa) does not change the optirnal value. Also note that (45)
imp l ies f  20 , i .e .  cors t ra in t (b )  in (   ) .  Thuswear r ivea t the f ina l fo rmof  ourdua i
problem of (41):

{rs.\irD.ite -f Ij_\ frt'r, - u'1
such that

(44)

3 . :

It ir
pro

I
,f,r,

j : r

We already established that both the primal problem (41) and its dual problem (46)
are strictly feasible. Consequently both problems are solvable and their optimal
values equal.

3.3.4 Back to primal

Problem (46) is not exactly the dual of ( l) - it is obtained by elimininating part
of the variables. what happens if we pass from (46) to its dual? It turns out that

O 1

( . ( >  0 ,  i  :  l ,  . . . .  r } ,  ( 4 6 )

:  I ,

I t  is '
w e I I
Choc
large
feasil
value

3.3 .3

Since
interi<
value.
constr

(b)
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for the LMIs in (41), with oi € R, Br € s^, u; € R-, and dual scalar variables'I € R+ for the weight constraint and r; € R+ for the nonnegativity constraints. The
dual problem is then given by

maximize -2Dj=, Iltui - w1
such that

(12)

(d) , I  " ,  
= r,

o  
t = t

( t )  D,o[  Bru,  + r i  - ' r  o ,  i  =  1,  .  . .  ,  n ,

3.3.2 Eliminating the 4's

It is obvious thal we cau eliminate lhe slack variables ri, thus arriving al the equivalent
problem

rnaximize -2 Dj=,  I  j ' r ,  - .1

such thar

(43)

Il is worth noting lhat (43), and as a consequence a)so (42), rs st,ric[)y ieasib)e. l ndeed,
we may choose arbitrary positive reals oi and by normalization, wc rnay enforce (c).
choosing 0i large enough we enforce strict inecluality in (a). F'inally, choosing 1
large enough also (d) will hold strictly. Since the primal problern (41) is also strictly
feasible. we cotrclude that both problerns have optimal solutions and that lhe optirlal
values are equall

3.3.3 Eliminating the Bi's

Since (43) is strictly feasible, when arlding the constraints ai ) 0, for all j, the
interior of the feasible region does not change, and hence neither does the optirnal
value. However, if o; > 0 then we may apply the schur complement lemma to the
constraints in (a), yielding the equivalent constraints

(o) ( ""i )
\ r ,  p r )

(b )  j
(") ri

(a )  ( ' ;  
' ; ,  

)  
r  o ,  i  : 1 ,  ,  k ,

( b )  1 )  0 ,

u , u ; t u f  3  9 5 ,  j  :  1 ,  . . . .  f t



To-prove the converse part of the theorem, let (t1, . . . ,  tn, r) be feasible to (41). As
beforewef ix  j ,  I  <  j  Sk .  Foreveryc  €  Rt i requadra t ic fo rm (4g)  o f  y€  i . , ,  i s
nonnegative, hence bounded below. The minimizer of this fo.- sati.fi".

Ae)u : -,f I ou, :i u,,,r.,'l
L =,  

'J
and hence this equation is solvable for every c. This holds in particular if r : -r.
Let the vector yi satisfy

374

Now define

Then we have

C. Roos & D. Choeroni

A ( t ) Y 1 =  l t .

s! : trbTui.

n n

Lq',t, =Lb,t,u!'ui: A(t)y, = 7,,

(4e)

(50)
i : l  i = l

thus ensuring the validity of equation (c) in (az). It remains to show that the LMI,s
(o) in (az) are satisfied as w9ll. Thus we finalry neetl to show that for every r € R
and for every vector €: (€,)l:, we have

F( ' , 1 )  : 2 r r2  *  rD rd€ ,  + ! , , e :  >  o .  (b1 )

Given c' let us set 

€i = -xbr;'ai,

and let us prove that the vector{* minirnizes F(",€). This is easy, because F(r,.)  is
a convex quadratic form, and its partial derivative with respect to {; at the point {iis equal to (see (49))

2rfl + zt,e: : 2 (J]t;b'!' y, - hrb! yr) : g,

for all i, proving the claim. Thus, to cornplete the proof of (b l ), we only need to show
that P(r,{') > 0. This goes as follows:

F(t, (€,.),,") = 2rr2 n , f ,dtei +i ,,,t '

n n

= 2rx2 - 2DldbTvj +lx2yla;t,t!y,

-  /  
n  

\ '= 2rx2 - n ( l .4na, I  q1 + r2yt j  aely,
\ u ' '

: 2rx2 - r,;;;, * !,4, ep1o,
The last reduction used (50). Hence we write

F( , .€ . ) : (  '  ) ' / r ,  t l  \ (  "  )' '  ' -  
\  -rr ,  )  \  l ,  .q(,)  1 \-wt )

s i n c e ( 1 1 , . . . , t n , r ) i s f e a s i b l e t o ( a l ) t h e l a s t e x p r e s s i o n i s n o n n e g a t i v e , a n d h e n c e
the proof is complete. n

w
fc
c(
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we end up with a nontrivial (and instructive) equivalent formulation of (al), namely,
with the problern

where the design variables are

o  l ; € R 1  a n d r € R ;

o  d e  R ,  j : r , . . . , k , i : 1 , . . . , n .

(47) is not the straightforward dual of (46); it is obtained from this dual by eliminating
part of the variables. Instead of deriving (a7) in this way, we preler to give a direct
proof of its equivalence to (41) by proving the following result.

Theorem 3.7 A collection (t 1, . . . , tn, r) is feasible to (l 1) if and, only if it can be
eztended by properly chosen

{ d . * "  :  i : r . . . . , k , i : r ,  . , " }

to a feasible solution to (/7).

P r o o f :  L e t  ( t 1 ,  . . . ,  t n ,  r )  a n d

{ d . * "  :  r : 1 ,  . . . , k , i : t ,  . , " }

compose a feasible solution to Q7). Fixing j (l < j < ,t), we should prove the validity
of the LMIs in (41). Thus we should prove that for every pair (2, y) with e € R and
g € R ' ^ w e h a v e  

/  n  \
2r r2+2x l f y+0 , (U ,b ; tg ' ! ' l y ; -  0 .  ( i 8 )

\ a /

In view of (c) in (47) the left hand side of (48) is equal to

t r / r , \ r . n

2rx2 + zrlu!u|'u + ut lDbJ,b;!' I ! 
= 2rx2 + 2D q),€, + f ,,c,t,

where {; = uTy.'i't"."rrrrin, *;r:*,." l, norn,r,, b"t th:j.,,utu" or rr,'" quadratic
form with the matrix from the left-hand side of the LMI (o) in (az) at the vector
comprised of r and ({;),, and therefore is nonnegative, as claimed.

(47 )

(
(o) l

\

(b)

(")
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with M free nodes. Note that in this case p : l, n x 0.5M2 and rn = 2M. Assuming
k << M, here are the sizes of (41), ( O) and (47) :

Design dimension

( 4 1 ) n + l = 0 . 5 i 1 2
(46) t r * + k + l x 2 k M

(47) n k + n + l = 0 . 5 k M 2

f  and sizes of LMI's

(41 ) k  o t  ( 2M +  l )  x  (2 / r /  +  l )
(46) n x 0.5M2 of  ( ,k+ t )  x  ( f t  + 1)

(47) & o f ( n + 1 ) x ( z + 1 )

f  t-r f  l i rrcar corrstraints

( 4 1 ) r L + 7 = 0 . 5 M 2

(46)

(47) k M + l

We see that if the number ,t of loading scenarios is small (which norrnally is the
case), the design dimension of the dual problem (46) is by orders of magnitude less

than the design dimensions of both prirnal problems. As a kind of penalization, the
dual problem involves a lot (= 0.5M2) of LMI's irrstcad of just f t  LMI's in the primal

problems. But the LMI's in the prirnal problems are large, and these in the dual small

in size. When solving these problems with the best-known nurnerical techniques so

far (the interior-point algori thms), thc computational effort for (41) is O(M6), while

for (46) it is only O(k3 lvt3). For large M and small & this does rnake a significant
difference!

Of course, there is an irnrncdiate concern about the dual problem: the actual design
problems are not seen in it at all. IIow do we recover a (nearly) optimal construction
from a (nearly) optimal solution to the dual problem? Irr frct. however, thcre is

no reason to be concerned: the required recovering routines exist arrd are cheap

com putat ionally.

4 Concluding remarks

In this paper we illrr^strated the use of conic optimization as a powerful tool for the

mathematical modelling of inherently nonlinear problerrrs. As an exatnple we used

the truss topology design problem. One rnay check the reference list below to observe

that with the exception of one paper all relevant papers appeared in the lzrst 10
years. Indeed, the subject thanks its existence to the development of efficient solution
rnethods for conic optimization problems in the la^st decade. Bspecially the possibility

of nrodelling robustness of a design in a computationally trartable way opens the way

to many new applications. We demonstrated this only for the TTD problem, which is

a popular application in the literature. For other interesting applications we refer to

[8] and the other references. It may be expected that the ongoing researc]t will bring

forth many new importamt applications in the near future.
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russ

3'3'5 summary of the semidefinite moders for murti-road and ro-bust TTD

:l,"r,ltrr^r"::t.: :j^r_"Tliri,re.the.resuits of rhe previous sections by presenti

:l,jil":'n,"1-n:*:.T11, ra r ),' n" J - p"il;;;;' i*j # 1;: :i.?ffi::11ffi i
ll* : " l11l j: r .'r! m u r t'o-# ;;il;;: 

,."u" 
;li,:Tl.il:,' A 1 ;"* i'ff :, fl'il:ldesign problems, respectively

r n l n  7

s .  t .
m t n  7

s .  t .

< 1 , ,

> 0 , i :

Q I \
n l

f  a , r ,u l ' l
r = l  /

; "

t ;

(z,ru
(u)  

lq
\

(lr)

(")

/ , ,  f j  \

f  , [  
0,,,0! 

)
\ - r
/  " l

(")

(b)

( c l

! n ; -
> 0 ,

t ; > 0 , i : l : r t

I n l l l  7

s .  t .

( o )  (

I
(b) < u l

: f i ' j = 1 : & .(c)

> o ' j : 1 : k ,

3.3.6 Evaluation

To understand how fruitful our effort was, it is enrightening to compare the sizes ofthe original probrem (41) and the ,"ro.-ururi"" raol of its simplified duar problem.Let us restrict ourselves to the simple 
"*" 

oiu planar i-load truss design probrem

Multi - load TTD

Simpli f ied dual probtem
Inax

s .  t .

(u )

(b )

)-^

mirx -2T[ (e' t 'V) - ut1
s .  t .

/ ^ \  |  t r  V t  b , \  .\ u ,  
\ o l v  

- ,  
) ' u ' ? : l

(b) 21\ (a) :  1.
(r € Rr', V 61r1n,xn

Simpl i f ied  pr ima l

rtritr r
s .  t .

I
( r )  

|

\

> 0 ,

< w ,

- /'l
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A Appendix

Lemma A.1 (Shor [20)) Let.A € R'x' ,b € R" and, c eF-. Then the quadrotic

Jorm zr Ax * 2br a * c is nonnegatiue lor all x € Rn if and only if

(  J  :  ) . ' o r '  
equ ivaren t rv( : ,  

- . ' ) "

Proof: The proof consists of a sequence of logically equivalent statements, as
follows:

V( / ,  c )  :
l a

> 0  c +  |  . .-  
\ r , ,
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