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Abstract

It is well known that Moore digraphs of degree d > 1 and diameter &£ > 1 do not exist. For degrees 2 and 3, it has been shown that for
diameter k 2 3 there are no almost Moore digraphs, i.e. the diregular digraphs of order one less than the Moore bound. Digraphs with
order close to the Moore bound arise in the construction of optimal networks. For diameter 2, it is known that almost Moore digraphs
exist for any degree because the line digraphs of complete digraphs are examples of such digraphs. However, it is not known whether
these are the only almost Moore digraphs. It is shown that for degree 3, there are no almost Moore digraphs of diameter 2 other than
the line digraph of K. In this paper, we shall consider the almost Moore digraphs of diameter 2 and degree 4. We prove that there is
exactly one such digraph, namely the line digraph of K.
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Sari

Ketunggalan graf berarah Hampir Moore dengan derajat 4 dan diameter 2

Telah lama diketahui bahwa tidak ada graf berarah Moore dengan derajat d >1 dan diameter &k >1. Lebih lanjut, untuk derajat 2 dan 3,
telah ditunjukkan bahwa untuk diameter & 23, tidak ada graf berarah Hampir Moore, yakni graf berarah teratur dengan orde satu
lebih kecil dari batas Moore. Graf berarah dengan orde mendekati batas Moore digunakan dalam pengkonstruksian jaringan optimal.
Untuk diameter 2, diketahui bahwa graf berarah Hampir Moore ada untuk setiap derajat karena graf berarah garis (line digraph) dari
graf komplit adalah salah satu contoh dari graf berarah tersebut. Akan tetapi, belum dapat dibuktikan apakah graf berarah tersebut
merupakan satu-satunya contoh dari graf berarah Hampir Moore tadi. Selanjutnya telah ditunjukkan bahwa untuk derajat 3, tidak ada
graf berarah Hampir Moore diameter 2 selain graf berarah garis dari K. Pada makalah ini, kita mengkaji graf berarah Hampir Moore
diameter 2 dan derajat 4. Kita buktikan bahwa ada tepat satu graf berarah tersebut, yaitu graf berarah garis dari K.

Kata kunci: batas Moore, graf berarah hampir Moore, graf berarah garis, graf berarah komplit, pengulangan.

1  Imtroduction If in a digraph G, the in-degree equals the out-degree (=
By a digraph we mean a structure G = (¥, 4) where ¥(G) ¢01)f (fi'(;rg ree\;e?./ vertex, then G is called a diregular digraph
is a nonempty set of distinct elements called vertices; and
A(G) is a set of ordered pairs (u, v) of distinct vertices u, A vo - v walk W of length & in G is an alternating
v € V(G) called arcs. A digraph H is a subdigraph of G~ sequence (voa,viaz - - - axv) of vertices and arcs in G such
if V(H) < V(G) and A(H)\ c A(G). that a; = (v..1,v;) for each i. A closed walk has vy = v, If
The order of a digraph G is the number of vertices in G the arcs ai, ay, - - -, a of Ware distinct, J'is called a
. trail. 1f, in addition, the vertices vq, vy, - + -, v are also

i.e., |[(G). An in-neighbour of a vertex v in a digraph G
is a vertex u such that (4, v) € G. Similarly, an out-
neighbour of a vertex v in a digraph G is a vertex w such
that (v, w) € G. For § ¢ W(G) denote by N (S) . ] )
(respectively N'(S)) the set of all in-neighbours The distance from vertex u to vertex v in G, denoted by
(respectively out-neighbours) of elements of S, that is 8(u, v), is defined as the length of the shortest path from
N(S) = {w e G)(w, v) € G, v e S} (respectively, vertex u to vertex v. Note that in general, d(x, v) is not
N'(S) = {w € V(G)|(v, w) € G, v € S}. The in-degree necessary equal to 8(v, u). The diameter k of a digraph G
(respectively out-degree) of a vertex v € G is the number is the maximum distance between any two vertices in G.
of its in-neighbours (respectively out-neighbours) in G.

distinct, W is called a path. A cycle} C, of length & is a
closed trail of length £ > 0 with all vertices distinct
(except the first and the last).



Let one veriex be distinguisked i a diregular digraph of
degree -2, order s and diaineter & Letn, i=0, 1, - -, kbe
the number of wvertices at distance J from the
distinguished vertex. Then,

;

n; sd fori=1,--k ()
Hence,
L3
n= msleded vordt )
i=0

If the equality sign holds n (2) then such a digraph is
called the Moore aigraph. The right-hand side of (2} is
called the Moore bound.

Digraphs with order close to ihe Moore bound arise in
the construction of optimal networks [4, 10]. it is well
known that except for trivial cases (ford = 1 or k= 1)
Moore digraphs do not exist (See [13] or {5} for a
simpler proof). The trivial cases are the cycles Gy of
length k+1 and the digraphs Kz, on d+1 vertices,

Since the Moore digraphs do not exist for d 1 or & &1,
the problem of the existence of almosi Moore digraphs,
L.e., the diregular digraphs of diameter &£ 2 2 and degree d
> 2 and order one less than the Moore bound, becomes
an interesting problein. Such digraphs are denoted by (d,
k)-digraphs.

Several results have been obtained. The first result in this
problern was due to [6] showing that (d, 2)-digraphs do
exist, interestingly, one such digraph is the line digraph
of Kgi. In particular, there are exactly three won-
isomorphic (2,2)-digraphs [12] (see Figure 1), while
there is exactly one (3,2)-digrapl, i.e., the line digraph of

()G HANS)6) r:(12)(3456)
(a) ) ()]

Figure 1 The thiee rwirisomorphic (2,2)-digraphs

7 (123)(456)

In [11], Miller and Fris proved that (2, k)-digraphs with k
> 3 do not exist. Subsequently, it was proved that (3, k)~
digraphs with & = 3 do not exist (sce [1]).

Every (d, k)-digrapt G has the characteristic property
that for every vertex x e G there is a unique vertex y & G
such that there are two walks of lengths not exceeding &
from x to y in G [2]. Such a vertex y is called the reoear
of x, denoted by r(x). If r{x)} = y then Ly = v (s
general, it may happen that x is on a cycle of length & in
digraph G, then +{x) = x and the two walks in question
are the trivial walk and the k-cycle itself. Then x is calied
a selfrepeat).
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Furthermore, no veriex of a (d, k)-digraph s contained in
two cycles of length k.

For § < W(G) we define #(S) = LJ r(v)and similarly »

ves

(3) L_Jf“—i(v). The function » can be considered as a
€5

permutation on ihe vertex set of G. Figure 1 illustrates
the notion of repeat for the three existing (2,2)-digraphs
[3). Each permutation is cxpressed as a set of
permutation cycles.

The following result was proved in [2].

Theorem 1 For every vertex v of a (d.k)-digraph we
have : (a) N'(r(v)) = r (N"(v)) and (b) N'(r(v)) = v(N
V).

Thi~ theorein shows that the mapping x -+ r{x) Is an
autumorphism of 1{G). In what follows we shall

therefore refer to r as the repeat autormorphism of the
almost Moore digraph G.

In [8], we have proved that if the (4,2)-digraphs contain
one selfrepeat vertex then the (4,2)-digraphs do not exist,
except for the (4,2)-digraphs with every vertex is
selfrepeat.

in this paper, we shall prove that there is only one such
(4,2)-digraph (up to isomorphism), that is the line
digraph of K. To see that, we have to show that if the
{4,2)-digraphs contain no selfrepeat vertices then the
(4.2)digraphs do not exist. By using algebraic
techniques,

J. Gimbert [7] shows independently the uniqueness of
(4,2)-digraphs.

2  Results

In the following, we assume that the (4,2)-digraph G
contains no selfrepeat vertices. Thus, there is no cycle &,
oflength2 in G.

Lemma 1 There is no (4,2)-digraph G containing
subdigraph of Figure 2 with r(¢) = a and r (s) = ¢, for
some s € V(G)\{b, h}.

Figure 2

Proof. Since (c, b) € ( then by Theorem 1 we have
(Hc) = a, r(b)) € G and thus 7(b) € {d, e, f}. Torcach a
from b, it certainly cannot be done via ¢ or j. It also
cannot be done via h since that forces r(h) = ¢, which is a
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conitradiction with (s} =

G.

¢. Therefore, we have (g, a) e

We also have to reach  from &. 1f we do titis via ¢ or

fhm Hay = ! but (a ‘) € G s6 by Thcorcm 1 we have
c{a.d, a) G, a \,omladmmn H we 'each d ﬁom b wa
g then 1(g) = d. This implies #(b) € {ef}. Simce (b, g)
G then by Theorem 1 we have (e,d) € G or (f,d) « .
Both cases yield #(a) = d, a contradiction with (g} = d.
Thus, (h, d) € G
To reach v from &, it cannot be done via A since
otherwise there are multiple repeats for A, namcly r(/) =
v and d. If we do that via g then Hg) = d, v»hu.h 18
impossible from above. Therefore we have (e, v) ¢ & or
{ v} € G. Each case implies #(a) = v. Since (g, ¢) €
by Theorem \ref{iso} we have (v, a) & G. Thus, #(v) = 4.
Applying Theorem \ref{iso} for (v, @) € G, we have (4,
v) € G. This creates a (3 : {d ,v, d) in G, which is not
possible. Thus we cannot reach v from & in two steps. [
By sumilar arguments, we can show the two following
lemimas.
Lemma 2 There is no (4, 2)-digraph G containing
subdigraph of Figure 3 with #(¢) = a and r(s) = ¢, for
some s € V(G)\ {b, i}.

Figure 3

Lemma 3 Suppose G is the (4,2)-digraph conigining
subdigraph of Figure 4. If H{p) = u and u # N'(a) U
N'(c)w N'(p)then (¢, ¢) ¢ G.

Figure 4

Lemma 4 Let G a (4,2)-digraph with nc selfrepeat
vertices. Then there exists a vertex v ¢ G such that d{v,
r(v)) =2

Progf. Let x be a vertex of G. If d(x,n(x)) = 2 then
choosc v == x and the proof completes. Otherwise suppose
N'(x) = {x1, x2, %3, x4} and r(x) = x,. Since (x, xz) ¢ G, it
implies that (r(x) = x, r(x2)) € G by Theorem 1.

Therciore d(xy, #(x2)) = 2. The proof complcies by
choosing v = x,. [

According to Lemma 4 we can label the veriices of G by
0,1, 2, .., 19, such that d(0, #0)) = 2. Without loss of
fvcmmlilf assume that N'(0) = {1,2,3,4\}, N'(1) = {5, 6.

7,8}, N'(2) = {8,9, 10, 11}, N'(3) = {12, 13, i4. 15},
and N'(4) = {16, 17, 18, 19}. Thus, we have (0} = 8 and
due tc Theorem 1, /{1, 2, 3, 4}) = N'(8).

Since (G have degree 4, then we know that the vertex 0
has feur in-neighbours. But vertices 1, 2, 3, and 4 have to
reacit O 1o walks of length 2. Thus, we have three
centially different cases as showrn m Figure 5
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Figure 5 The three different cases of (4. 2)-digraf G

2.1 Casel

Consider a (4,2)-digraph G containing the subdigrapb of
Figure 5(a). Thus, we have (1) = 0. From now on, we
denote by x, y, and z the remaining out-nicighbours of &
other than 0.

Lemma S Let G be u (4.2)-digraph comaining
subdigraph of Figure 5{a). Then 5 ¢ {9, 10, 11}, y «
{13, 14, 15}, and z € {16, 17, 18},

Froof. None of the out-neighbours of 8 is in {1, 2} tacre
are no Cy in G, if one of themy, say «, belongs to {3,4}
then #(8) = x. Bui {8 0) ¢ € 50 we have (v, 8) € G, by
Theorem 1. This creates a Ch ¢ (x, & %) &, which is
uinpossible. Mone of them is in {5, 6, 7, 12, 19}, since
r{1) = x 20 18} - 0, buth cases are contradiction with #(13
= 0. If two of them, say v and v, are wn {9, 10, 11§ then
we have two repeats of 2, namely r(2) = x and 3. a
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contiadicion. 1hus we have at mosi one outneighbour of
gin {9, Lo, 1i}.

Next we shall show that there 15 at most one
outneighbour of 8 in {13,14,15}. To do this assume there
are two, say x and y, are in {13, 14, i5}. Denote by p the
remaliling vertex such that (3, p) € G and by v the veriex
such that (vz) ¢ (, then we have the forbidden
subdigraph of Lemima 1 in G by letting a =8, b= 3, ¢ =
UOd=z,e=y,f=x,g=p, h=12,and s = |, wharc v &
{2,3,4}.

Thus we have at most one out-neighbours of 8 in {13,
14, 15}. Similatly, we can show that at most onie of thein
be in {16, 17, 18}. Altogether completes the proof. U

Theorem 2 There is no (4,2)-digraph  conlairing
subdigraph of Figure 5 (a).

Proof. Suppose that G be a (4,2)-digraph containing
subdigraph of Figure 5(a). Due to Lemina 5 we have that
ve {9,10, 11}, y e {13, 14, 15}, and z « {i6, 17, 18}.
Denote by p and ¢ the two remaining outneighbours of 3
other than 12, then we have the forbidden subdigraph of
lemma2in G, by letunga =8, b=3,¢c =0, d =z, ¢~ x,
f=y,g=p,h=¢q,i=12,v=1,w=2 and 5= 1 Thus
there is no (4,2)-digraph containing subdigraph of Figure
5a. U

22 Casez

Consider a (4,2)-digraph G containing the subdigraph of
Figure 5(b). Thus, #(4) = 0. Denote by x, y. and ¢ ihe
remaining out-neighbours of ¥ other than 0. Then wo cai
prove the following lemma by applying Lerunas [ and 2.

lemma 6 Let G be a (42)-digraph conizining a
subdigraph of Figure 5(bj. Then we have x £ {5,6, 7}, y
e {9, 10, 11}, and z € {13, 14, 15} or we have x € {5, 6,
Ti,ve (9,10, 11}, andz ¢ {17, 18}

Then the following theorem holds by Lemmas 6 and 2.
Theoremy 3 There is no (42)-digraph coniaining
subdigraph of Figure 5(&)

2.3 Case3

Consider a (4,2)-digraph G containing the subdigraph of
Figure 5(c). Theit it is easy to sce that the following
propositions hold.

Proposition 1 For cach in-neighbour u of 0, we have
ru) ¢ {0,3,4,5,6,7,9,10, 11},

Proposition 2 [/, ve N (I8 aru, v e N (2)\8 then
uv) ¢ G.

By appiying Theorem 1, Propositions 1 and 2, we can
show the following lemma.

Lemma 7 Let G be a (4,2)-digraph containing the
subdigraph of Figure 5(c). Then (a) if (5. u) € G then u
g {1,3,4,6,7, 8, 11, 15, 19} and (b) there is at most
one outneighbours of 5 € {9, 10}.
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Nezt denote by 4, y, and z the outacighbours of S other
than 0. Then the following lemma holds.

Lemma 8 Let O a (4,2)-digraph containing subdigraph
of Figure 5(¢c). Then x € {9, 10}, y & {12, 13, 14}, and 2
e {16,17, 18}.

Prooj. Due to Lemuma 7, we coly have to show that
there is ai most one out-neighbour of 5 in {12, 13, 14}
{and {16, 17, 18} respectively). Secking a contradiction,
assume two out-neighbours of 5, say x and y, are in {12,
13, 14}. Denote by p the retaining vertex such that (3,p)
s G

If z = p then we cannot reach 5 from 3. Thus z ¢ {2, 9,
10, 16, 17, 18} and so (p,5) € . MNow, we shall
distingliisn three cases : (8)z= 2, (b)z € 19,10}, or () z
o {16,17.18}

Inz s2(a), we have »(5) = 2, but then there is ne walk of
fergth < 2 from 3 to 2, a contradiction.

in case (b) 1t can be shown that arcs (15, 2), (w, 2); (15,
1), (x, 185, (8, 18), (z, p)s (¥, 8), and (v, 11} must be in .
(See I'gure 6). These unply that #(3) = 15, «(i5) = 1,
Hp) =z, and r(z) = 5. But then we cannot ieach 19 from
3, a contradiction.

Figure 6.

In case (¢) we cannot reach 4 from 3, a contradiction.
Thus, at most one out-neighbour of § can be in {12, 13,
14}, With a similar way, we can prove that at most one
of them can be in {16, 17, 18}. Therefore, x € {9,10}, y
e {12,13, 14}, and y € {16, 17, 18}.0

Now, we have to prove that the (4,2)-digraph containing
subdigraph of Figure 5(c) do not exist. Before proving
that, we prove the foliowing propositions. In the
following, By applying Lemma 8, we consider a (4,2)-
digraph G containing the subdigraph of Figure 5(c) with
x e {9,10},y € {12,13,14}, and y € {16,17,18}. Denote
by p the remaining vertex such that (2,p) € Gand p ¢
{x, 8 11}.

Lemma 9 There is no (4,2)-digraph containing the
subdigraph of Figure 5(c).

Proof. Seeking a contradiction, assume G & (4,2)-digraph
containing the subdigraph of Figure 5(c). We cannot
reach 5 from 2 via x, since otherwise there exists a (' in
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(7. Neither can via 11 by Proposition 1. So we shall
distinguish two cases : () we reach 5 from 2 via § or (b)
we reach 5 from 2 via p.

in case (a), we can show that arcs (1,8), (.3} (¥,
{v,11), and (x,19) must be in & and so #(1) = 5, 18} =y,
and #{(6) = 0 (see Figure 7).

But then we cannot reach 15 from 2, a contradiction.
Therefore, we cannot reach 5 from 2 via 8.

In case (b), by applying Lemma 3, we have (8,3) « &

and (8,4) ¢ & (sec Figure 8).

Then it forces (2,19) ¢ G and (y,15) ¢ G. Since 5 have to
reach 11, 15, and 19, we have the following options :

e (x11},0,19),(z15) e Gor
o (%15, (n19),(z,1])e Gor
o (519), (1), {15 e G

e S

Figure 7

Figure 8

However, all three options are impossible to occur.
This completes the proof. [

From the three cases above then we have the following
corollary.

Corollary 1 There is no (4,2)-digraph without selfrepeat
vertices.

In [8), it showed that the only (4,2)-digraph containing a
selfrepeat is the line digraph of K. Therefore, together
with Corollary 1, we get

11

Theorem 4 There is exactly one (4,2)-digraph, namely
the line digraph of K.
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